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COYENT TO USERS

in the upper right-hand corner of each Mastery Test you will find the "pass"
and "recycle" terms apd a row of necbers "1 2 3 ..." to facilitate the
grading of the tests. We intead that you indicate the weakness of a student
who is asked to recycle on the test by putting a cirele around the nusber of
the learning objective that the studeat did not satisfy. This procedure will
enable you easily to identify the learning objectives that are causing your
students difficulty.

COMMENT TO USERS

It is conventional practice to provide several review mpdules per semester oOr
quarter, as confidence builders, learning opportunities, and to consolidate vhat
has been learned. You the instructor should write these modules yourself, in terms
of the particular weaknesses and needs of your studeats. Thus, we have not supplied
review modules as such with the CBP Modules. However, fifteen sample review tests
were wyritten during the Workshop and are available for your yse as guides. Please
send $1.00 to CBP Modules, Behlen Lab of Physics, University of Nebraska - Lincoln,

Nebraska 68588.

FINIS i

This printing has completed the initial CBP project. We hepe that you are finding
the materials helpful in your teaching. Revision of the modules is being planned
for the Summer of 1976. We therefore solicit your comments, suggestions, and/or
corrections for the revised edition. Please write or call

CBP WORKSHOP

Behlen Laboratory of Physics
University of Nebraska
Lincoln, NE 68588

Phone (402) 472-2790
(402) 472-2742




¥oduie 1
STUDY CGUIDE

REFLECTION AND REFRACTION

INTRDDUCTIONR

Sight is certainly one of our most important senses and depends on the interaction
of electromagnetic waves in the yisible portion of the spectrum with the eye.

The use of materials that reflect 1ight and that refract or “bend® 1ight extends
throughout our industrialized society.

In this medule we deal with light traveling in two dimensions and encounterina

the boundaries between media under those conditions in which the wavelenath is
small compared with the size of the obstacles or apertures. Under such conditions,
since diffraction and interference effects are negligible, the principal phenomena
occurring at the interfaces, reflection and refraction, can be understood and

the progress of a wave charted by a simple geometrical procedure: ray tracing.

PREREGUISITES

Before you begin this module, Location of

you should be able fo: Prerequisite Content

*rite the relations ameng wavelenath, Traveling HWaves
frequency, and velocity for a wave {needed Module

for Obiectives 1 and 3 of this module)

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Definitions - Define 1ight ray, angle of incidence, refraction, angle of
refraction, index of refractioen, angle of reflectien, total internal reflection,
critical angle, reciprocity, and Huygens®' principle.

2. Law of reflectien - Use the law of reflection to solve problems involvina
the angles of incidence and reflection, ray naths, and/or the images formed

by plane mirrors.

3. Law of refraction - {a) Use the law of refraction (Snell's law) to solve
problems involvind the relationships among index of refraction, wavelength,
velocity of 1ight, angles of incidence and refraciion, and ray path for planar
slabs of materials. (b) Wse the law of refraction to find the Jocation of
the image of an illuminated object emhedded in & slab of transparent material.

4. Total internal reflection - Use the concept of total internal reflection in
con;unct1on with the laws of reflection and refraction to find the nath of a
ray that is internally reflected, or find the index of refraction if the rav

path is given.
5
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STUDY GUIDE: Reflection and Refractien 2

GEHERAL COMMENTS

1. Befinitions

Since the definitions of terms that vou myst know to master Obiective 1 are
scattered throuchout the readfings, we have collected brief definitions here.
These are not meant to be necessarily compleie definitions, but should serve to
remind you of the full meaning and special usage of each term as vnu read.

Refraction: the bending of a ray of 1iaht as it nasses through the boundary
between two media.

Angle of refraction: the angle between the refracted ray and the normal to the
boundary between two media.

Angle of incidence: the anale beiween the incident ray and the normal to the
boundary between two media.

Andle of reflection: the angle between the reflected ray and the normal to the
boundary between the two media.

Light ray: a line parallel to the direction of propagation of the 1iqht and
normal to the plane wavefront. Although not entirely accurate, i1t is satisfactory
for most ray-tracing purposes to think of a very small beam of 1ight as eauivalent
to a ray.

Reciprocity: also called “ootical reversibility." reciprocitv means that 1ight
will follow the same ray path through a series or refractions and reflections in
going from point A to point B as it will in the reverse direction, B to A.

Huygens' orinciple: A1l points on & wavefront can be considered as ooint sources
for the production of spherical secondary wavelets. After a time t the new position
of the wavefront will be the surface of tangencv to these secondary wavelets.

Total internal reflection: Yhen a ray in an ootically dense medium falls on an
interface with a Jess optically dense medium at angles of incidence ereater fhan
some critical angle, for all practical purposes no licht is transmitted; it is
all reflected.

Critical angle: the minimum angle of incidence at which total internal reflection
appears. It corresponds to the angle of incidence for which the angle of refraction
equals 90°.

Index of refraction: a property of the medium defined as the ratio of the velocity
of 1ight in vacuum to that in the medium. A material with a large index of
refraction is called optically dense,

2, Dispersion

In general the texts and problems assume monochromatic 1ioht {single wavelenoth).
However, 1ight beams are a mixture of waves whose wavelengths extend throuahout

6

e




STUDY SUIDE: Reflection and Refraction 3

the spectrum. Although the soeed of light in vacuum is the same for all wave-
lengths, the speed in material suhstances may be different for different wave-
lengths. A substance in which the speed of a wave varies with wavelength is said
to exhibit dispersion. The index of refraction of a substance is a function of
wavelength. Problem £ is an example of this effect. The dispersion effect is
important since it orovides a means of separating {disnersina) light into its
various colors in a prism spectrograoh, it explains rainbows, and it is the cause
of color fringing in low-quality binoculars.

3. Important Formulas *

There are really only three formulas you need to memorize for this module:

Law of reflection: e{ = B] or 3.=48.
Law of refraction: ny sin 87 = 0y sin 8.5-
Definition of index of refraction: n=cfv.

We strongly suggest that you do not memorize formulas for the apparent depth of
an object in a pond, or the critical angle for internal reflection, etc. Thev can
be very short derivations if you understand the principles, and we have found
from oast experience that students who have memorized the formulas frecuently
make mistakes in identification of svwmbols and are less able to deal with new
situations.




STUDY GUIDE: Reflection and Refraction 4{r 1)

TEXT: fredErick J. Bueche, Introduction te Physics for Scientist and £ngineers
{¥cBraw-Hill, New York, 1975}, second edition

SUGGESTED STUDY PROCEDURE

Your text uses a different order from most texts in the presentation of the material
in this module. We suggest that you read Chapter 30, Sections 30.1 through 31.8
for continuity and definitions of terms, then reread Sections 30.71 to 30.3, 36.7
and 30.8 7or detailed help in mastering the objectives. Bueche does not explicitly
use Huygens® principle te derive the laws of reflection and refraction, as is custo-
mary, althougn the discussion in Section 30.7 is based on this princinole. He

does give @ statement of the princiole in Section 32.1 on p. 632; however, the
application is not particularly relevant to the present module. The princiole is
stated in the General Comments of this study quide. The derivations are not
necessary for the applications of the laws of reflection and refraction required
for mastery of this module; however, they will helo your understanding. A more

complete treatment can be found in fundamsrntals of Physics.*

Read General Comments 1 through 3 in this study guide. Then study Problems A
through G and Illustrations 30.3 and 39.5. Then selve Problems H through .

If¥ you need more practice, you may wish to work some of the Additional Problems
listed below before taking the Practice Test.

BUECHE
Objective Problems with Solutions Assigned Additional
Hlumber Readings Problems Problems
Stidy Text Study (Chan. 30)
Guide Guide
1 Secs. 30-1,
30-2, 30-3,
30-7, 30-8,
General
Comment 1
2 Secs. 30-2, A, B Nius.? 301 H, I ]
30-3, General
Comment 3
3 Sec. 30-7, ¢, D, Ilus. 30.5 d, K 14, 15, 16
General E
Comments 2, 3
4 Sec. 30-3 F, G L, M

1lus. = ITlustration{s).

*David Halliday and Robert Resnick, Fundamentals of Physics {Wiley, Hew York,
TC 1970; revised printing, 1974), p. 673. 8




STUDY GUIDE: Reflection and Refraction 4{HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics {Wiley, Hew
York, 1970; revised printing, 1974) .

SUGGESTED STUDY PROCEOURE

Read Chapter 36, Sections 36-7 through 36-5 and 36-7. The text does not Qive
much detail on the variation of n with wavelength. University Physics* has a
more complete discussion that you should read if this text is available to vou.
However, for purposes of mastering this module you may find that the discussion
in General Comment 2 and the solution tc Problem E will suffice.

Read General Comments 1 through 3 in the study guide. Then study Problems A
through € and Examples 1, 2, and 5 in your text. Solve Problems H through M,
if you need more practice, you may work some of the Additional Problems listed
below before taking the Practice Test.

HALLIDAY AND RESNICK

Dbjective Problems with Solutions Assigned Additional

Humber Readings Problems Problems
Study Text Study (Chap. 36)
Guide Guide
1 Secs. 36-1
to 36-5,
Generat
Comment !
2 Secs. 36-2, A, 8 Ex.? 5 H, I 1, 24 to
36-7, 30, 32
General
Comment 3
3 Secs. 36-2, c, D, Ex. 1, 2 d, K 3,4, 6,
36-3, 36-4, E 8, 9, 10
General
Comments 2, 3
4 Sec. 36-5 F, 6 L, M ]? to 19,
2

Ex. = Example(s).

*Francis Yeston Sears and Mark Y. Zemansky, University Physics (Addison-lesley,
Reading, Mass., 1970), fourth edition, Chapter 38, Sections 38~5 through 38-7.

q
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STUOY GUIOE: Reflection and Refraction 4(Sz 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Phvsics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read Chapter 37, Sections 37~1 and 37-3 through 37-6. These sections nive some
detail on the nature of 1ight and introduce to you the laws of reflection and
refraction. HNext read Chapter 38, Sections 38-1 throuch 38-4, 38-6, and 38-7.

These sections derive the laws of reflection and refraction from Huydens' principle
and define index of refraction, total internal reflection, and dispersion. Finallv,
read Chapter 39, Sections 39-1, 39-2, and 39-6, which discuss imaae formation for
plane mirrors and plane refracting surfaces. Althouah the readings are not in

the same order as the objectives, you will find the order of the text better for
the first reading.

Read General Comments 1 through 3 in the study quide, and study Problems A through
G. Then solve Problems H through M. If you need more practice you may wark some
of the Additional Problems listed in the Table below. before taking the Practice
Test.

SEARS AND ZEMANSKY

Objective Problems with Assianed Problems Additional
Numbey Readings Solutions Problems
Study Guide Study Guide
1 Secs. 37-1,
37-3 to 37-6,
38-1 to 38-4,
General
Comment 1
2 Secs. 37-5, A, B H, T 37-6, 37-7,
38-1, 38-2, 39-2, 39-3
39-1, 39-2,
General
Comment 3
3 Sec. 37-5, ¢, D, E J, K 37-8, 37-10
38-3, 38-6, to 37-13, 38-1,
38-7, 39-6, 38-3, 38-4,
General 38-13, 38-15,
Comments 2, 3 39-11 to 39-13
4 Sec. 38-4 F, 6 L, M 38-6 to 38-12

10




STUDY GUIDE: Reflection and Refraction 4{us 1)

TEXT: Richard 7. Weidner and Robert L. Sells, ElementarVy Classical Physics
(A11yn and Bacon, Boston, 1973), second edition, Vol. 2

SUGSESTED STUDY PROCEDURE

Read Chapter 36, Sections 36-1 through 36-8. You will not be responsible for the
contents of Section 36-7; however, this discussion of refraction of 1ight from
an atomic point of view should broaden your general understandine of reflection

and refraction.

Read General Comments 1 through 3 in the study guide. Then study Problems A
through G and Example 36-1. Soive Problems H through M in your study gquide. 1If
you need more practice, you may work some of the Additional Problems listed below,

before taking the Practice Test.

WEIDNER AND SELLS

Objective - Problems with Solutions Assigned Additional
Number Readings Problems Problems
Study Text Study
Guide Guide
1 Secs. 36-1
to 36-8,
General
Comment 1
2 Secs. 36-3, A, B Ex.? 36-1 H, 1 36-1, 36-3,
35"4: 35-4
General
Comment 2
3 Secs. 36-3, c, D, d, ¥ 35-5 to 36-8,
36-5, 36-6, E 36-11 to
General 36-13, 36-16,
Comments 2, 3 36-19, 3620
4 Sec. 36-8 F, G L, M 36-17, 36-21

®Ex. = Example(s).

i1




STUDY GUIDE: Reflection and Refiraction 5

PROBLEM SET WITH SOLUTIONS

A{2). Two plane mirrors stand on a table adjacent to each other at an angle
of 60°. See Figure 1.
{a) Trace a horizontal light ray that is reflected twice in this system.
{b) Compute the angle between incident ray and second reflected ray.
Define clearly all quantities used.

Figure 3

60’

Figure 1

-}

Solution

P x N
‘ Mirror Surfaces

sa; See Figure 2.
b) X is the quantity sought. By the law of reflection, 6 = 87, ¢ = ¢~ {the
dashed 1ines are normals). Sum the angles in triangle POP”:
60° + (90° - 4) + (90° - 6) =180° or ¢+ 6 = 60°.
The exterior angle of triangle PP°Q = the sum of the onposite angles:
X =20+ 29 = 120°.
B(2). The image formed by a plane mirror will act as an object for a second

mirror. Locate in Figure 3 the three distinct images that can be seen- by
a suitably placed eye.

12




STUDY GUIDE: Reflection and Refraction 6

Soiution

Take the right-hand mirror by itself as in Figure 4{a}. Since Si = Gr, the
projection of any reflected ray behind the mirror intersects the normal teo the
mirror at a point that is as far behind the mirror as the object is ir front of

it: the object distance £3vals the image distance. W¥e can now locate images A

and B on Figure 4(b). In Figure 4(b) a few light rays have been drawn that underao
two reflections aad appear to come from a ooint C, the third image. The imeae

at A {and B) acts as an object for the image at C, and therefore the image lies
along the normal to the extension of the mirror: AP = PC.

{2)
N
- \\
.
object '_-::,33 image
- rd
rd
Figures 4
&
2. Figure 6
i [ ;0
g/4= 1.00
Air !
'
7771 0 7
2 @
3
s, ¢2> nsy = 1.33
oP i n2 s §.50

?y -
74 ng = 1,63
P

Figure 5 13




STUDY GUIDE: Reflection and Refraction 7

C(3). A glass of water in Figure 5 is partially immersed in a tank of carbon
disulfide (CSz2). You are an observer D looking down through the water at
a particle P floating in the CS2. Some reflected 1ight leaves the particle
at a small angle ¢ with the vertical.
(a) At what angle & does that light emerge from the water? Express your
answeit in terms of ¢. Bater = 1.33; ng]ass = 1.5D; and Res, = 1.53.

(b) If D = depth of water, does your answer to part (a) depend on D?
Suppose D -+ 0.

Solution
(a} See Figure 6. Use Snell’s law at each interface:

(sin ¢)/(sin ¢,) = ny/ny,  (sin §,)/(sin ¢3) = ngy/n,,  (sin 6;)/(sin &) = my/ng. |

Multiply these three equations
siné _ M4

n
sin & n, or & =arc sin(ﬁi-sin $) = arc sin (1.63 sin ¢).

=

(b) Ho, 8 is independent of D, even if D » 0. In fact, take away the glass of
wvater and 8 is still the same. It is only necessary to consider the index of o
refraction of the initial and final materidls in calculating the final angle of
refraction, and in all cases the final angle is independent of intermediate
materials. However, the apparent Jocation of the object depends on these.

D(3). The "apparent depth” of an object immersed in an optically dense refracting
medium is 1ess than the true depth when viewed from directly above. Show
that the apparent depth d” is related to the true depth d by d” = n2d/ni1,
where n is the relative refractive index of the medium in which the object
is immersed. See Figure 7. HNote: One may assume the angles fo be so
small that the sine of an angle can be replaced by the angle itself.

Figure 8
12
1]
Figure 7 14

s5creen




STUDY GUIDE: Reflection and Refraction 8

Solution
The ray starts at depth d in the medium of irdex ny - By Snell's law:

n, sin 9] =N, sin 92,
and by the small-angle approximation, sin 8 = tan 8 = 8 {(in radians):
n]9] = n292.
From the geometry of Figure 7, tan 8, = X/d and tan 8, = x/d”. (Note that d” is

found by projecting the outgoing ray backward to the normal as the eye would do,
so that the light appears to come from depth d~.

tan 8 8 - N
l..—...-...].-=d :—2 d = =

tan 8, 96, da ny’ n

*

E(3). Crown flint glass has an index of refraction that varies with the wavelength
of the 1ight passed through it from 1.66 for a wavelength of 400 nm (violet)
to 1.60 for a wavelength of 700 nm (red}. A narrow beam-of 1ight containing
the red and violet wavelengths above falls on the center of a semicircle
cut from this glass, as shown in Figure 8. Find the separation S of the
two rays on a circular screen with R = 1.00 m, centered at 0.

Solution
Apply Snell's law for each wavelength:

n sin 9] =N, sin 92 and n sin 9] = n3 sin 93.
Rearranging, we find
8, = arc sin[(n]/nz) sin 9]], . 83 =arc sin[(n]/na) sin 9]].

Find
8, - 85 = arc sin(0.60/1.60) - arc sin{0.60/1.66) = arc sin{0.375) - arc sin{0.361),

g =22.0° - 21.2° = 0.8°,

i} 0.8°/57.3°, _ -2
R A8 = (1.00 m)( YT 1.40 x 107 m.

v
[}]

F(4). T@e crooks in a typical TV drama are attempting to recover a fortune in
diamonds that they earlier sunk in a chest in 8.0 m of water. As a cover
for the operation they have moored a floating oil-drilling rig above the
position where they sank the chest. If the dimensions of the chest are small
in comparison with the rig, determine the size of rig required in order
that no sailor on a passing ship can ses what is Going on under the surface.

o (Take n = 4/3 for water.)

ERIC 15




STUDY GUIDE: Reflection and Refraction 9

Solution

He can consider the sunken chest as a point source of light. If the oil rig is
big enough for its purpose, then all ravs of 1iaht from the chest that would he
refracted into the air at the surface must be blocked off by the base of the rid,
and all rays striking the surface of the yater outside the rig must be totally

internally reflected. The rig obviously must pe circular, and, if its center is
moored directly above the chest, a ray of 1ight striking the edde of the rig

must do so at an angle equal to ¢c, the critical angle. See Figure 9.

For the minimum radius r of the rig, n sin $ = {1)sin &y = sin{20°) = 1, therefore,

sin g, = 1/n or r](rz + 1:12)”2 = 1/n,

This gives us

8.0m
=91 m.

r=
(16/9 -

Alternate solution: Use Snell's law: n sin ¢c = 1; therefore, sin ¢c = 1/n = 3/4;
and 5_ = 48.6°. MWe can find r from r = d tan % = (8.0 m){1.13) = 9.1 m,

i 1
T ———y

| 7 e v I‘_’l i rd l ‘}
1 ]
; 1 Figure 10
d! ¥ !
r-“-“_------“—-—-
;bc i > = -nL >
PR i
w l p ( e~ —
L " WA
Figure 9 > |

| S o

6{4). In Figure 10 is shown a 1ight ray passing through one side of a pair of
binoculars. L's represent lenses; ignore their function in this guestion.
{a) Given that the two 90°-45°-45° prisms are included chiefly for the
purpose of shortening the instrument without decreasing the optical path
length between the lenses, tell vhether or not prisms made of clear plastic
of index n = 1.47 yould be suitable. Exslain, giving a quantitative ardument.
{b) Yould the above prism in part (a) be suitable if the entire system
prisms and lenses) were immersed in water? Indicate reasoning for vour
answer.

Q 16

ERIC |




STUDY GUIDE: PReflection and Refraction 10

Solution

(a) The prisms must allow total internal reflection at 45° incidence. Thus,
Bi = 45°, and Bi > ¢c, where sin ¢c = 1/n. Thus sin Bi > 1/n, or n > 1/(sin 45°) =
1.414. This condition is satisfied by a plastic of n = 1.47 and the prisms will

work.
(b) In water the same condition becomes
n
1,0
sin 8, = == 2 or sin ac == 1.33 =-%’3§ = 0.905 or ©_ = 65°.
plastic olastic *

Therefore ei < ec, and the binoculars are of 1ittle use %o a scuba diver 17 water

leaks inside them.

Probi=ems

H(2). (a) Using ray paths, prove that in a calm, unpolJuted lake the reflected
image of a pine tree on the shore will appear upside-down to a fisherman
meditating in his boatf.

(b) Wi11 the image of a fisk in the same lake surface appear inverted to
another fish? Explain.

1(2). Suppose that (for reasons best understood by you) you decide to photograph
a street scene by using the reflection in a store window. You wish to set
your camera so that point X will be in sharp focus; for what distance must
you set your camera lens? The dimensions are as in Figure 11.

J(3). Light strikes a glass plate at an angle of incidence of 60°, part of the
heam being reflected and part refracted. It is observed that the reflected
. and refracted portions make an angle of 90° with each other. What is the
index of refraction of the glass?

K(3). A bezm of 1ight as in Figure 12 hits a parallel-sided plate of dlass of
index of refraction n. The thickness of the glass is 6.0 mm and the light
beam is displaced a distance of 4.24 mm.

(a) What is the index of refraction of the glass?
{b) Yhat is the angle of refraction?

Store wi
Ll s/ f}"ﬂfﬁ a4

—
5 5 T
3 0 6.0 mm
Camera® 12.0 m 3 .
Object being photogr. nhedx.jg Figure 12

Figure 11 17
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STUDY GUIDPE: Refilection and Refraction iR |

L{4). A beam of 1ight shines on a glass prism e I
as shown in Figure 13. The bean is 697
pergsendicular to the first face. Trace n
out the subsequent path(s) of the light é5~\ (goo

beam until it has left the prism, and
find the angle of refraction as it leaves .
the prism. The index of refraction of Figure 13
the glass is 1.50.

#(4). A point source of 1ight is 1.50 m below the surface of a still pond of
water. It appears to an observer from above the water that the light
comes only from a well-defined circular area of the water surface. What
is the diameter of this circle?

Solutions

H(2). Yes. 1(2). 20.0 m. J3). 1.73.
K(3). (a) 1.22. (b) 35°. L(4). 48.6°. 1(4). 3.4 m.
PRACTICE TEST

1. Define critical angle and reciprocity, and state Huygens’ principle.

2. The image forwmed by a plane mirror will act as an object for a second mirror.
Find the first four images formed by the pair of plane mirrors shown in Figure
14 (i.e., find the four images closest to the object).

3. A microscope is focused on a scratch made on the upper surface at the bottom
of a small container. Water is added to the container to a depth of 3.00 mm.
Through what vertical displacement must the microscope lens be raised to bring
the scratch into focus again? Assume that the displacement of the lens is equal
to the displacement of the image.

4, A fish looking upward toward the water-air interface sees a circular transparent
hole surrounded by a mirror. What is the radius of this hole when the fish’s
eye is a distance of 1.00 m from the water surface? (n for water is 1.33.)

Dbject

L]
P S ey ——— -.-.-.-—..._.—._._. s e oy e e ot i -

Figure 14 L—k— L -

Mirror
Surfaces -
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Mast

Name

ECTION AND REFRACTION Date

pass recycle

1 2 3 4

ery Test Form A

Tutor

Define angle of reflection, total internal reflection, and index of refraction.

Harry Gluck 1s mounting a mirror on the wall. He wants to be able to see
himself from his feet to the top of his head. Harry's eyes are a = £1.100 m
from the top of his head and b = 1.70 m from his feet, as in Figure 1.

{a) What is the maximum height x that the bottom of the mirror can be above
the Tloor? )

{b) What is the minimum height y for the top of the mirror?

A diamond cutter is given a very large rough diamond to-cut. He polishes a
flat on one side and, while examining it under his microscope, discovers a
flaw at an apparent depth of 0.60 cm. The dijamond cutter knows some physics,
and, using the index of refraction of diamond n = 2.42, he calculates a real
depth of 0.250 cm and cuts at this point. Does he cut through the flaw? (Be
prepared to justify your answer.)

It is desired to deflect a light beam through 60° by using a prism as shown in
Figure 2. What is the minimum value of n for which total internal reflection
will occur at point A?

Figure 1 Figure 2
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REFLECTION AND REFRACTION Date

pass recycle
Mastery Test Form B

Hame Tutor

1. DBefine refraction, angle of incidence, and 1ight ray.

2. The image of a tree just covers the length of a 5.0-cm plane mirror when
the mirror is held vertically 30.0 ¢m from the eye. The tree is 100 m from
the mirror. ¥hat is its height?

3. A plate of glass 10.0 cm thick lies at the bottom of a tank under 10.0 cm of

water. What is the apparent distance from the top of the water to the bottom

of the glass plate? n = 2.00, n = 1.33.

glass water

4. A monochromatic ray, initially in air, strikes a glass cube as shown in

Figure 1. Find the index of refraction n such that the ray striking the glass
at point A is just internally reflecied.

figure 1

20




REFLECTION AND REFRACTION Date

pass recycle

Mastery Test form C
1 2 3 4

Neme Tutor

1. State Huygens’ principle, and define angle of refraction and critical angle.

2. A light source is positioned so that the beam from the source strikes a
mirror normally, as shown in Figure 1. A screen is positioned on both sides
of the 1ight source. HNow as the mirror rotates, the reflected beam striking
the screen moves across the screen. 1If the mirror rotates through an angle
of 15° from the normal position, how far will the spot of light move across
the screen?

3. A man in a diving bell looks out through a window and sees a fish at an

apparent distance of 12.0 m from the window. How far is the fish from the
window? ("water = 1.33. HNeglect the effect of the window.)

4. Light is incident normally on the face of a 3-4-5 prism opposite the 37°
angle. A drop of liquid is placed on the prism as shown in Figure 2. Hhat
is the index of refraction of the liquid if total internal reflection in the
prism is just possible? The index of refraction of the prism is 1.50.

Liaht
source
c 72 P :
A Screen
1
2.0 m
1
Figure 1 | Figure 2

Yirror




REFLECTION AND REFRACTION A-3

MASTERY TEST GRADING KEY - Form A

1. Solution: Angle of reflection: the angle between the reflected ray and the
normal to the boundary between the two media. Total internal reflection: #hen
a ray in an optically dense {large index of refraction) medium falls on an
interface with a 1ess optically dense medium at angles of incidence greater
than some critical angle, for all practical purposes, no light is transmitied;
it is all reflected. Index of refraction: 2 property of the medium Propa-
gating light defined as the ratio of the velocity of light in vacuum to that
in the medium.

2. Solution: See Figure 20. (a) The law of reflection is Gi = Br, therefore,
by congruent triangles, no matter what z is, x must be equal to 1/2 the distance
from Harry's feet to his eyes {x = b/2) as shown in Figure 20. x = 0.85 m.

(b) Similarly the mirror must extend a distance a/2 above eye level so that
Harry can see the top of his head. The minimum beight of the top of fhe mirror
is eye level {b) plus af2 or

y =170+ 0.100/2 = 1,75 m.

! nl=L00
T
e %]
= g4
oL |r n, = &
= L
EQW
— z —
Figure 20 Figure 2]

3. Solution: See Figure 21. The diamond cutter should have set up the equations:
By Snell's law: ny sin 9, = n, sin 6,.
In the small-angle approximation:

sin 9] = x,d]; sin 92 = x,dz.

22




REFLECTION AND REFRACTION A-2

Therefore, combining equations, we find

n](x/d]) = nz(x/dz).

The real depth is

d] = (n]/nz)d2 = [{2.42)/13{0.60 cm) = 1.45 cm # 0.250 cm.

The diamond cuiler goofed and cut it short. He now works for a butcher who
appreciates his short cuts.

4. Solution: At the interface of the prism and the air, point A, the liaht has
an angle of incidence of 60°. We may use Snell's law to find the critical
angle in terms of the unknown index of refraction, n.

i _ i - o1
n sin 60° = (1) sin 99° = 1,  n = —Fpz = ggg7 = 1.15.

Ifn>1.15, then n sin 60° > 1, and we shall still qet total internal reflection.
However, if n < 1.15, we can find an anqle of refraction 8 that will satisfy

n sin 60° = sin 6. Therefore n = 1.15 is the minimum index of rafraction for
this situation.

23
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REFLECTION AND REFRACTION B-1

MASTERY TEST GRADING KEY - Form B

2.

Solution: Refraction: the bending of a ray of light as it passes through

the boundary betwzen two media. Angle of incidence: the angle between the
incident ray and the normal to the boundary between two media. [ight ray:

a line parallel to the direction of propaqation of 1ight and normal to the

plane vavefront.

Solution: See Figure 22. A light ray proceeding toward A will be reflected

to 8. By the law of reflection the angle of incidence equals the angle of
reflection at the mirror. Therefore, the angle between the ray and eye level
at 8 equals that at A. Triangle BM) (= AMQ) is similar to ADC. Therefore, the
ratio of sides: OM/AD = CD/AC. But OM = (1/2) height of mirror = 5/2 cm,

A0 = B0 = 30.0 cm, and AC = 100 m + 30.0 cm = 100.3 m. The height of the tree

15

. 2{oM)(AC) _ 2(5/2 cm}(100.3 m) _
20 A0 - 30.0cm = 16.7 m.

Figure 23

Figure 22

Solution: See Fiaure 23. As derived from Snell's law in Problem D,

d” = (ny/n; )d,

where d is the apparent depth and d is the actual depth. We apply this
relation for the thickness of the glass as if our eye were in the water:

- . 1.33 -
dj = :£Tﬁ5(10.0 cm) = 6.7 cm.

For the refraction at the air surface we calculate the depth of the object
as 10.0 cm + 6.7 cm or 16.7 cm, and apply the formula again:

n
s (3 . =

24
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REFLECTION AND REFRACTION 8-2

4.

What To Look For: Student should be able fo figure out this identity. If

trig tables are not available, an answer in symbols shouid be acceptable, such
as

n = [cos{arc tan J?}z]".

Solution: Use Sneil’s law to Tind 6:

nair sin(45°) =n sin ¢ = 0.797.

The angle of incidence at the side of the cube where the refracted ray strikes
15 8 = 90° - &, Therefore, using Snell's iaw for the critical angie:

. = n. : oy =
n sin 8 = n i $in{90°) = 1
and substituting, we find
n $in{9° - ¢) =1 or ncos ¢ =1.

From the first step:

nsiné _ 0.707 _ ; = 380
N cos 6 3 tan ¢ or ¢ = 35°,
Thus

n = 1/{cos ¢) = 1/0.82 = 1,22,
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REFLECTION AND REFRACTION c-1

HMASTERY TEST GRADING KEY - Form €

1. Solution: Huygens' principle: Al1 points on a wavefront can be considered
as point sources for the production of spherical secondary wavelets. After a
time t the new position of the wavefront will be the surface of tangency to
these secondary wavelets. Angle of refraction: the anale hetween the refracted
ray and the normal to the boundary between the two media. Critical angle: the
minimum angle of incidence at which total internal reflection appears. It
;ggresponds to the angle of incidence for which the andle of refraction eguals

2. Sojuiicn: See Figure 24, 1Initially. Bi =8 _ = 0° Afiter the mirror rotates

r
15° {the normal to the mirror rotates 15°), 8; =6, = 15°. The included

angle is 6; + 9, = 30°. Therefore
x =2 tan 30 = 1.20 m.

3. What 7o Look For: Look for misidentificatien of terms. Ask student fo draw
a sketch and Jabel quantities if in doubt.

Solution: The solution to Problem D derives a formula applicable to this
problenm:

d” = (ny/n;)d;

r

where d” is the apparent distance, n, represents air, and n, represents vater
in this case. Therefore,

6 = {ny/ny)d” = (1.33/1)(12.0 m) = 16.0 a.
4. Solutfon: Use Snell's law to find the critical angle:
0y sin 8; = ny sin 8y,  (1.50){sin 53°) = ny{sin 90°} = n,.

Therefore n2 = 7.5 sjn 53° = 1,20.

T\

Figure 24 2.00 m

NS
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Fodule i
STUOY GUIDE

ELECTRIC FIELDS AND POTENTIALS
FROM CONTINUOUS CHARGE DISTRIBUTINHS

INTRODUCTION

Too bad! In case you have not realized it, not all charges come packaged as
points, spheres, infinite cylinders, or infinite planes. Ah, if only it wera
so: Life would be much easier from a calculational viewpoint, although somewhat
limited in geometrical options. But then, mechanics would be simpler if only
constant accelerations were observed in nature...lot to mention centers of mass;
moments of inertia, etc.; all would be considerably simpler to calculate in that
wonderful world of point masses, constant accelerations, massless strings, and
frictionless boards.

Once again calc.lus is needed to assist us in analyzing and understanding natural
pheromena that are often manifested in hunks of mass, variable accelerations, and
qlobs of charge.

This module introduces no new fundamental physics. Instead, you will learn to
extend the concepts of e]ecyric field and potential to charge distributions that
d:fg so]gtion by superposition of point-charge fields and potentials or application
of Gauss' law.

PREREQUISITES

Before you begin this module, Location of
you should be able to: Prerequisite Content
*Integrate polynomial, sine, and cosine Calculus Review

functions (needed for Objectives 1 and 2 of
this module)

*Determine the electric field of a point charge Coulomb’s Law and
{needed for Objectives 1 through 3 of this the Electric Field
module) Module

*Determine the electric potential of a point Electric Potential
charge {needed for Objectives 1 through 3 Module

of this module)

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Line char?es - Given a rectilinear charge distribution, set up, and in some
cases evaluate, the definite integral for:

27




STUDY GUIDE: Continuous Charge Distributions 2

(a) the total charge on a specified segment of thes line;
(b) the electric potential at a specified point;
(c) the electric field at a specifiad point.

2. Ring and disk charges - Given a charge distribution on a circular arc, sector,
or disk, set up, and in some cases evaluate, the definite integral for:
(a) the total charge on a specified portion of the distribution;
(b) the electric potential and electric field at the center of the circular
arc, sector, or disk and on the axis of the disk.

3. gimigiqg cases - Demonstrate that the integrals of Objectives 71 and 2 reduce
in 1imiting cases to results expected for simpler charge distributions.

GENERAL COMMENTS

Determining the electric potential ¥ or the electric field E from a continuous!y-
distributed charge generally requires the use of intearal calculus. Unless the
charge distribution has sufficient symmetry so as to permit the use of Gauss' Jaw
to determine E, a calculation of either E or V requires that you: (a) use physics
to set up a definite integral; and (b) use calculus (or numerical techniques) to
evaluate this integral. Since this is a physics course, your attention will focus
on step a. Step b can range in difficulty from trivial to impossible depending
upon the complexity of the charge distribution and upon your facility at evaluating
integrals. Although we shall not emphasize the mathematical gymnastics of integral
evaluation, you should feel free to try your hand at any that you simply cannot
resist!

When calculating t or V from a distributed charge, the essential idea is reasonably
simple. It goes like this. Select a very small (some would say infinitesimal)
charge dq within the distribution. Treating it as a point charge, write the
expression for either the potential dV or the field dt at the specified field point.

Then superimpose the contributions from the total distribution by means of an
integral. P

Let us look at this procedure in more detail. "_’
Consider Figure 1. There are three vectors r
you must be sure you understand -

Position vector for the field point P: i$ 4
g
R=xi+yj+zk;

Position vector for dg: . 28

- - ~ + ‘: + “- .
R=xi+yj+zs Figure 1 o




STUDY GUIDE: Continuous Charge Distributions 3

Pisplacement vector from dq to P:
FeR-R=(x-xi+(y-yi+(z-2k

As you know from your study of electric potential, the potential at P attributable
to the charge dq is

av = (k da)/r (k = 1/4zey = 9.0 x 10° & o%/6%),

vwhere r is the distance from dq to P, i.e.,

I

r=lrl=/X-XF -3 *(z-2)-

Writing out the expression for dV more explicitly gives us

v = (kdq)//(x - x)*+ {y -p*+{z-2)*.

This emphasizes the dependence of dY upon the coordinates of both the field point
P and the charge point. The potential at P from the total charge distribution is
obtained by sunming {integrating) over the charge.

vy f ke
all charges

The dependence of the electric potential on the coordinates of the field point
is emphasized by the functional dependence of ¥ on R.

for a given charge distribution the limits on the integral will be determined by
the geometry of the charge distribution. This will be discussed in more detail in
the Problem Set.

The electric field at P attributable to dq is

dE = (i dq)/ro.
Using the integral to superpose the contributions from all the charge gives us
ER) = [lF da)se,

where, again, the dependence of the field on the coordinates of the field point
is emphasized.

You should note that the essential difference between the expressions for V and
E is that V is a scalar sum, but E results from a vector sum. Details of setting
up these integrals and seeing how to check them are covered in the Problem Set.
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STUDY GUIDE: Continuous Charge Distributions 4{B 1)

TEXT:  frederick J. Bueche, introduction o Physics for Scientists and Engineers
{(¥cCraw-Hil1, New York, 1975), second edition

SUAGESTED STUDY PROCEGURE

Begin by studying the General Comments. Then read Sactions 18.6 and 18.7 up %o
INustration 18.4 on P. 336 in Chapter 18 of your text, and Section 20.8 in Chap-
ter 20. Hext study Problems A through D and work Problems J, L, ¥, and H. Study
Problems £ and F and work Problem K. Problem S is challenging and optional. Hext
study I1lustration 18.4 and Problems G and H. Hork Problen 0 - Problem T is
challenging, but opiional. Study Sections 20.12 and 20.13, Problem I, and work
Problems P, 0, and R.

Take the Practice Test, and work some Additional Problems if necessary, before
atterpting a Mastery Test.

BUECHE
Objective Readings. Problems with Assigned Additional
Humber Solutions Problems Problems
Study Study
Guide Guide
] Secs. 18.6, A, B, C J, L, S; Chap. 18,
18.7, 20.8 ¥, N Probs. 13, 14
2 Secs, 18.7, G, H, I 0,0 T; Chap. 18,
2612, 20.13 Probs. 15, 16,
17; Chap. 20,
Probs. 18, 19
3 SEC. 20.8 ﬂ, Es F Ks Ms H; S
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TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 1970; revised printing, 197&)

SUGGESTEG STUDY PROCEDURE

Begin by studying the General Cosments and Problems A through D. Then work Prob-
lem J. Hext study Problem E and work Problems K and L; study Problem F and work
Problems M and H. Problem S is a challenging example that you may work if you so
wish. HNext study Problems G and H before working Problem O and, if vou like, the
challenging Problem T. MNow go to your text and read Example 5 in Chapter 23 (on
pp. 439, 440) and Example & in Chapter 25 (p. 473). Then study Problem I and
work Problems P, (, R.

Take the Practice Test, and work some Additional Problems if necessary, before
attempting a Mastery Test.

HALLIDAY AHD RESNICK

Objectivé Problems Assigned Additional
Humber Readings with Solutions Probilems Probilems
Study Guide Study Cuide _
] General Comments A, B, J, L, S; Chap. 23,
C, F M, N Probs. 28, 29
2 Chap. 23, Ex.2 5; G, H, 0, Q T; Chap. 23,
Chap. 25, Ex. 6 I Prob. 27
3 General Comments D, E, K, M, N, S
F P, R

3y, = Example(s).
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STUDY GUIDE: Continuous Charge Distributions 4{(5Z 1)

TEXT: Francis Weston Sears and Mark ¥. Zemansky, University Physics {Addison-
Yesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Begin by studying the General Comments. Then read Section 25-2 in Chapter 25,
and study Problems A through D before working Problem J. Next study Problem E
and work Problems K and L. Then study Problem F and work Problems ¥ and N, and
Problem S if you 1ike (challenging but optional). Study Problems G and H and
work Problem O; Problem T is optional. Study Problem I and work Problems P, @,

and B.

Take the Practice Test, and work some Additional Problems if necessary, before
attempting a Mastery Test.

SEARS AND ZEMANSKY

Objective Problems Assigned Additional

Humber Readings with Solutions Problems Problems

Study Study
Buide Guide

1 General Comments, A, B, d, L, S
Sec. 25-2 C, F M, H

2 g, Hy 1 0, Q T

3 b, E, F K, M, H. S
P, R
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STUDY GUIDE: Continuoys Charge Distributions 4 (4s 1)

TEXT: Richard 7. Meidner and Rcbert L. Sells, Elementary Ciassical Physics
{(A1lyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Begin by studying the General Comments. Then study Problems A through D and work
Problem J. Read Section 23-3 in Chapter 23 up to and including Example 23-2. Then
study Problem E and work Problems K and L, study Problem F and work Problems M

and #i. Hext study Problems G and B and work Problem 0. Problems S and T are
challenqing optional problems. Study Problem I and work Problems P, {), and R.

Take the Practice Test before attempting a Mastery Test.

WEIDHER AND SELLS

Objective Problems Additional
Humber Readings with Solutions Assigned Problems Probiems
Study fGuide Study Guide
] General A, B, _ J, L, S
Comments, C, F M, K
Sec. 23-3
2 G, H, 1 0, 0 T, 23-9

3 D, E, F K, ¥, N, P, R S




STUDY GVIDE: Continuous Chzrge Distributions 5

PROBLEM SET WITH SOLUTIONS

A(1). A charge Q is uniformly distributed over the interval 0 < x < L along the
X axis.
(a) Determine the linear charge density in 0 < x < L.
{b) Determine the charge dq on a segment dx in 0 < x < L.
(c) Set up and evaluate an integral for the elactric potential at a point
(x, 0, 0) on the x axis to the rignt (x > L} of the charge.

Solution

(a) See Figure 2. Since Q is uniformly distributed the linear charge density A is
constant in 0 < x < L and given by

A = Q/L.
» i
e a j
JZ" T

T

Figure 2

(b} The charge dq in a segment dx in the charge region is equal to the charge
density multiplied by the length of the interval,

dg = A dx = {Q dx)/L.
(c) The vector from dq to the field point is ¥ = (x - 5)?, and its magnitude is
S
r=r] =x-x for x>x

Then-the potential dV at x attributable to dq is
dx
_kdg _ (k =
av = 50 @)=,

and the potential at x is

: L dx
V(x)=fg-£ x?x :

The 1imits on the integral are determined by the charge boundaries. In a one-
dimensional distribution such as this, the smalier boundary coordinate (x = 0) is
the lower limit and the larger {x =L} is the upper limit. The integral for v{x) is
evaluated by the substitution u = x - X to get
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STUDY GUIDE: Continuous Charge Distributions 6

TORE. N i UBEL SRV SO

x-LY
B(1). BDetermine E at (x, 0, 0) (x > L) for the charge distribution of Problem A.

Solution
The Field dt at (x, 0, 0) from dq is

dt = “.':rgﬂ= ('Lﬂ}(x -)I = = (193 (—29

and

. L
x) = (7 f —
) = i f e

Using the substitution u = x - x gives us

S X
=B [ W- &

x-Lu

Comment: Recall from your study of potential that if the potential is a function
of one variable only (in this case, x), then

E(x) = -~dv/dx.

Let us check this in this case.

S -GG x -l - 01 = k- L - A R,

as expected.

€(1). Charge is distributed along the x axis as given by the linear charge density
1(§)=a_>_<_2 for 0 < x <L.

(a) Determine the total charge Q in this distribution.
(b) Express the constant o« in terms of Q and L.

Sojution
(a) A(x) is the linear density in coulombs per meter (C/m). The charge dq on
an infinitesimal segment dx at position x is dq A(x) dx. Since the total charge

contained in a region a < x < b is given by [ A(x) dx, the charge Q is
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STUDY GUIDE: Continuous Charge Distributions 7

L
2 1,3
Q=f ax“dx =zl".
0 - 3

(b) Solving for a gives us
e = 393,

Thus
Alx) = 323,

D(3). Show that E(x) from Problem B reduces as expected for x >> L.

Solution

First, how do we expect  to behave for x >> L? In this case the field point is
so distant from the charge that T should be very close to that from a point charge
Q at the origin, i.e.,

Tlx >> L) = (kQ/xz)i.
Now let us see if this is the case. The Problem B result can be written

tx) = 52—

(1 - L/x) i

E

For L << %, L/Xx << 1, and 1 - L/Xx = 1. Therefore

T(x >> L) = (kQ/xz);.

E(3). Show that the integral for ¥{x) in Problem J reduces as expected for x >> L.

Solution
For x >>L > X, x - X = Xx. Thus

2 3
L X~ dx x° L
3k0 = Vo 3kQ (=~ - k@
V(x 5 L) = = I = .
E é X Ox S e] X

which is the potential for a point charge Q at the origin.

F(1, 3). For the c?arged rod of Problem A (charge Q uniformly distributed over
D0<x<l): ~
(a) SeT up an integral for the electric field at B = yj (a point in the
plane perpendicular to the x = 0 end of the rod).
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STUBY GUIDE: Continuous Charge Distributions

(b) Show that this integral reduces as expecied for y >>.L.

diE‘K\J

i
l >
1 " d
Y! ¥
: e
i
Figure 3

Solution
(@) See Figure 3. _The electric field at yj resulting from the presence of

dg = {Q dx)/L at xi is

dE = (/L) (F au/r?),
where ¥ = 15? ¥ y3 (Why the negative sign?), and

r = [E] = (2 +yD)1 2,
Thus

dt = (KULE(-xi + v3) al/ (2 + 2 V2,
Integrating to get E at (y, 0, 0) gives us

L (-xi + dx

which may be rewritten

L xdx ~ L dx ~
= (X = = c 4 (k =
E(y) = ('Lﬂé 2 A (‘?1‘{ 2 5

Thus the components of E are

L xdx L dx
_ K o= kQy =
E = 'fg , E 3 .
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STUDY GBIDE: Continuous Charge Distributions g

(b) Before seeing what happens to these results for y >> L, what do we expect?
If the rod length L is small compared to the distance from the rod to the field
point, the field should be very nearly the same as that of a point charge Q at
the origin. That 1is,

Ely »> L) = (kQ/y)].

Let us see. Consider the y component first. Since y >> L and 0<x <L,

Xz + 32 = yz,
AY
so that
:n—mJ-+X
L dx i
fly > 1) =P[5 *
0 vy yZ t
-&
Just what we expected! Yhat about Ex? i
Figure &

L x dx
E (y > L)|= X [ ——= koL
, U] =3

What's this? We expected E, to be zero, and it apparently isn't. But things are
not as bad as they might appear. Watch. Rewrite the result for Ex:

[E (y > L)f= ;-3(%;) = 55 E{y > L) << Ely > L).

Thus although Ex is not identically zero, it is negligible compared to Ey' The
integrals for Ex and Ey can be evaluated by standard substitution technigues.

The appropriate substitutions and the results are given. Have a try at it if you
are so inclined.

2 o
B, u= £ 5y, E(y) = -(k/Ly)[1 - yiy? + LYV,
-3
: .z . 2, 2,172 dy*
Eys tan 6 =5 E (y) = kU/y(y" + L7) %

Figure 5

6(2). A charge is uniformly distributed along the circular arc shown in Figure 4.
Determine the electric potential and field at the origin.

Solution

Let dg be the charge on a segment of arc as in Figure 5. Since each dg is the
same distance from 0, the electric potential is particularly easy to determine:
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STUOY GUIDE: Continuous Charge Distributions 10

The displacement vector from dg to the origin is
*= (a cos 93; + (a sin 3)3.

The electric field at 0 attributable to dg is then
gt = {kr dq)fr3 = kf(cos B)? + {sin B)E]/a2 dg.

since dq subtends an arc segment of length a d8 and since Q- is uniformly distributed
aiong the length m/2, '

= . =2Q
dq-%]—?_-ade—r da.

Thus

2, = X5 72 1(cos 0)i + (sin 0)i1% do = Y 2 (cos 6 do)i + [2(sin o de)il
a 0 ma 0 0

= (2k0/ma%) (7 + 3).
Thus
_ 2
E.x Ey = 2kQ/ma”.

Since Ex = Ey, _EO makes an angle of n/4 with the positive x axis and has a magnitude

g2, 22,172 2
Eo-(Ex-!-Ey) = 2/2k0/7ma".

H(2). A charge § is uniformiy distributed over one—quarter of the circle shown in
Figure 6 as a shaded region. OQetermine the electric potential at the

origin 0.
e
4 dr
£ 03 _‘)% = 0
R
dA
Figure 6 Figure 7 .
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Soluticn .
See Figure 7. The essential iéaa here is: {a) to determine the patential at 0
frem the charge on the ring of radius r and width dr; and (b) to add these contribu-
tions tc get ¥. In Froblem 6 the contribution fvom the ring w23 determined to be

av = (k dgi/r,

where dqg is the charge on the ring. To gol dq we use the fact that § is uniformly
distributed over the aréa (i/43sR‘, and thus the density on this surface is uniform
and given by

g = g .-.40
{(1/4)}%R< ~ =wR% °

The area dA of the ring undcr consideratich is
dA = {length} x {width)} = {1/2)wr dr.
Therafore the charge on the ring is
dg =o dA = {20r dr}/R°.
The potential at 0 attributable to this ring is then
av = 2kQ/RE dr.

Summing over all rings, i.e., integrating over r from 0 to R, gives us

R
vy o B gy o 2O

U R

Comment: By rewriting this as

_ k
Yo = ﬁ%z’
we see that the potential at 0 is the same as if all the charge were placed a
distance {1/2)R away.

1{2). A charge G is uniformly distributed along a ring of radius a as in Figure 8.
Determine the electric potential and field at the point P on the axis of

the ring.
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STUDY GUIDE: Continuous Charge Distributions 12

&£ dE cos &
P2,
| \
2 i A
i
‘l||||||||||||||||I||IiiiJ!t
Figure 8 Figure 9

Soluation

See Figure 9. The distance from each elementary charge dg on the ring to the
field point is constant,

¢ = (22 + a2)1/2‘
Hence, the potential at P is

Vi) = ot =

(z5 + a%)

The components of € perpendicular fo the axis sum to zero. This is ensured by
the fact that charges on opposite sides of the circle contribute fields with equal
ceémponents along the axis but oppositely directed perpendicular components. From
the figure the magnitude of the field at P by dq is

dE = (k dq)/r%,
and the axial component is

dE, = dE cos a = dE(z/r) = (kz da)/ (2% + a?)32.
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STUDY GUIDE: Continuous Citarge Distributions 13

Therefore,

£, (z) = frz/ (2 + a8¥% q,

but since a and z do not change for different dg‘s,

E(2) = Dke/(2? + a%)/2fdq = ket (2 + a2)/2.

Problems

3{1). Set up {but you need not evaluate) integrals for V and T at the point {x, 0, D),
x > L, for the linear charge distribution of Problem C, A{x) = 3Qx%/L.

K{3). Show that the integral for £(x) in Problem J reduces as expected for x >> L.
L{1). For the charge distribution of Problem C,

Mx) = 323 for0<x <L,
determine the electric potential and field at the origin.

#{1, 3). (a) Set up the integral for the electric potential at the point yj as in

Problem F. .
{b) Show that this integral reduces appropriately for y >> L.

{1, 3). {(a) For the uniformly charged rod in Figure 3, set up integrals  for the
electric potential and field at an arbitrary field point x1 + yj + zk.
{b) Show that your integrals of part {a) are identical to earlier integrals
for the following cases:
(i) x>L,y=2z=0 from Problems A and B.
ii) y>0, x=2=0  from Problems F and H.

0(2). A charge Q is uniformly distributed along the circular arc shown in Figure 10.
Determine the electric potential and field at the center.

P{3). Show that the results obtained in Problem I behave as expected for z = O
and 2 >> a.

Q{2). A charge Q is uniformly distributed over a disk of radius R as in Figure 11.
Set up, but do not evaluate, integrals for the eiectric potential and field
at a point on the axis of the disk.

R{3). Show that the integrals of Problem I reduce appropriately for z >> R.

s{1, 3). (Ootional - challenging). (a) Use the integrals of Problem M to evaluate
V and E at (]/2)Li + yj, a point in the midplane of the charged rod. Hint:

Use the substifution
x - L/2
v .

tan § =
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STUDY GUIDE: Continuous Charga Distributions 14

{b) Suppose y << L for part (a). In this case the figld point is very close
to a long charged rod. Show that your result for T reduces to that obtained
for a long charged rod using Gauss’ Taw, namely, (2kQ/Ly)i.

/

Figure 10 Figure 11 Fioure 12

T(2). (Optional - challenging). A charge Q is uniformly distributed over the
area shown in Figure 12. UDetermine the electric petential and field at
the center.

Solutions
2
L x° dx
_3kQ = "= 3kQ -
aq). = , E
(1). v(x) 3 g X=X (x) = g (x — i.
K(3). E(x > L) = (kQ/xz);.
L(1). v(0) = 3kg/2L, E(0) = -(3kg/LO)i.
dx
M1, 3). V(.V)-—O"f W —0‘- for y > L.

Comment: The substitution tan ¢ = x/y leads to

V(y) = (k1) I [(57 + 12)V2 4 Llyy.
Remember, you are not required to do this integral.
dx
0 [(x - _)2 + y + z2]1/2 *
PR S L [AE L.
0 [(x - 5) + y + 2°]

43
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STUDY GUIOE: Continuous Charge Distributions 15

0(2). ¥y = kWa, B, = (2ky=ad)i.

P{3). z=0: ¥{a) = kQ/a, EZ(O) = 0.

2 > a: Y = kQ/z, Ez = lezz.
R
2k r dr
0(2). v(z) = —29- >
R (r2 s z2)]12

R
E(Z) = ZZRQ r dr i.
Z b Zs )T

R(3). ¥(z >> R} = kQ/2°, E(z >> R) = (kQ/2%)k.
s(1, 3). V(L/2, y, 0) = (2ko/L) In{[(ay° = 19172 5 112y},
E(L/2, y, 0) = [2k01y(4y2 + Lz)” 2]3-

T(2). V= 2KUR, E)-= (8%Q/3:8%) (1n 2)3.

PRACTICE TEST

1. A linear charge is distributed along the x axis with the density
My=uf for 0 < x < L.
(a) Determine the total charge Q in terms of « and L.
(b} Determine the electric potential at the origin. Express your answer in
terms of Q, L, and other constants (not including o). -
2. A charge § 1s uniformly distributed along the arc shown in Figure 13.
(a) Oetermine £ at the origin.
(b) Use

lim sing 4
a+0 «a

to show that your result reduces as expected as « + 0.

A . 0 .

“/ \ 0 L{[e/(® us)J( U/} = 73 (2) 2

X 77777 Figre1z cwmup =4 (0) W) = b (R) (L

Q. 7 44 SJoMsSUy 3Saf 991310844
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ELECTRIC FIELDS AHD PDTENTIALS
FROM CONTIHUOUS CHARGE DISTRISUTIONS Date

pass recycie

Mastery Test Form &
1 2 3

Name Tutor

1. Charge is distribuied along the x axis according to the linear charge density
A{x} = 8 sin(=ax/L), 0<x<L.
(2) Determine the total charge 0.
{b) Set up, but do not evaluate, an integral for the electric potential at the
field point xi + yj.
{c) Set up, but do not evaluate, an integral for the electric field at the
field point xi # yﬁ.
2. Show that your integrail for ax, y) in Problem 1 reduces appropriately for
Y
£e{L/2, v >> L).

3. A charge @ is uniformly distributed on the flat circular sector shown in
Figure 1. Determine the electric potential at the center {point 0) in terms
of &}, R, ¢, and other constants as needed.

Figure 1 A




ELECTRIC FIELDS ARKD POTEHTIALS
FROM CONTINUOQUS CHARGE DISTRIBUTIONS Date

pass recycle

Mastery Test Form B

Name | Tutor

1. Charge is distributed along the x axis according to the linear charge density
Mx) = 8x(L - xJ, B<x<L.
(2) Determine the total charge Q.
(b) Set up, but do not evaluate, an integral for the electric potential at the
field point xi + yj + zk.
(c) Set up, but do not evaluate, an integral fer the electric field at the
field point xi + yj + 2k.
2. Show that your integral for V(x, y, z) in Problem 1 reduces appropriately
for Y(x >> L, 0, 0).
3, A charge 0 is uniformly distributed on the flat circular section shown in
Figure 1. Determine the electric potential at point 0 in terms of @, R, and
other constants as needed.

Figure 1
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ELECTRIC FIELOS AND POTENTIALS
FROM CONTINUOUS CHARGE OISTRIBUTIONS Date

pass recycle

Mastery Test Form C

Hame Tutor

1. Charge is distributed along the X axis according to the linear charge density
a{x) = B cos{ax/2L), -L <x<L.

{a) Determine the total charge 0.
(b) Set up, but do not evaluate, an integral for the electric potential at
the field point xi + yJ + zk.
(c) Set up, but do not evaluate, an integral for the electric field at the
field point xi + yj + zk.
2. Show that your integral for E(x, y, z) in Problem 1 reduces appropriately for
E(0, 0, z >> L).
3. A charge Q is uniformly distributed on the annular ring shown in Figure 1.
Determine the electric potential at a point on the axis of the ring a dis-
tance h from the ring's plane.

(5

Figure 1
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ELECTRIC FIELDS AND POTENTIALS FROM CONTINUOUS CHARGE DISTRIBUTIONS A-1

MASTERY TEST GRADING KEY - Form 4

1. ¥hat To Look For: {a) Correct answer. {b) Be sure denominator of answer
is correct. (c) Check for unit vectors in numerator.

Solution: 0 = 3L A{x) dx = EL B sin{zx/L) dx = 28L/x.
kdo _ L _ ks sin(nle)
(b) ¥(x, y) = s £ =
D [ix-02+ 2"
-3
(c) Blx, y) = s K580 = /4 "B[(" = )i '2”’3] SIDX/L). gy
r 0 - x)* +y7]
2. What To Look For: {a) No contribution to Ex. (b) Correct result. .
Solution:

/3
- 1 L
B(L/2, y>> L) = IL ke[ (L/2 7 sin{nx/L) dx

[

-("B IL(-Q--_)S'IH( )a_)n(—f f'e sin(Z) ax)3.

But fL(i-- x) sin{7= 3) dx =0  {odd about x = %)

and
ILS s1n( %) dx =

So B(L/2, y >> L) = (k0/LD)].
3. What To Look For: {a) Correct dg. ({(b) Correct expression for dV. {c) Correct

answer.
- 3 = 2

Solution: See Figure 17. Area of sector = ¢R"/2. Charge density = EgEE 2

' ¢
dA = {r¢) dr, dg = {density)dA = (2Q/¢R2)r¢ dr = {2Qr dr)le. j
dv = (k dg)/r = (2kQ dr)/RC, 3
Ve R4 .20

0 R "
Figure 17
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ELECTRIC FIELOS ANO POTENTIALS FROM CORTIHUOUS CHARGE OISTRIBUTIONS B-1

MASTERY TEST GRADING KEY - Form B

1. What To Look For: (a) Correct answer. (b) Correct denominator. (c) Unit
“vectors in nuserator.

mmm:mqﬂfuy@=%ﬁmqu=ﬁm

(b) v(x Y, Z) = f—'g- IL_g%-_&dex.
[(x - x + z%] -

B(x,y, z) = fJrda. (L kelx - x)i + yj + zkIx(L - x) &
R R TP

2. 4Yhat To Look For: See that integral for { is correct. Correct answer.

Solution: ¥(x >> L, 0, 0) = ]‘- k_s’(‘% dx -_-.:-0]‘- Bx(L - x) dx =l;9.
0

3. What To Look For: Correct dg. Correct dV. Correct answer.

Solution: See Figure 18. Area of sector = (3n/2)(R2/2) = (3uR2/4).
Charge density ¢ = Q/Area = 40/3nRS.  dA = (rs) dr = (3s/2)r dr.
dg = o dA = (35/2)(40/3:R%)r dr = (20/R%)r dr.

_kdg_2KQ o g o fay. (R2KQ . _ 2K
w-—rﬂ-ggw, Vo= [ ar = 20,

+dA

Figure 18
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ELECTRIC FIELDS AND POTENTIALS FROM CONTINUOUS CHARGE DISTRIBUTIONS C-1

HASTERY TEST GRADING KEY - Form (

1. #hat To Look For: Correct answer. Correct denominator and limits. Unit
vectors 1in numerator. Limits

Solution: (a) Q= ]Lx(i) dx =8 IL cos(;%) dx
= -L L

4sL

i}

f k dg _ IL ks cos(zz/ZL\ dx.
r

b ¥ ¥ =
(b) ¥(x, ¥, z) R AT

. KFda . A kel(x - x)i+yj+ zk] cos(ax/2L) ,
(c) E(x, ¥, 2) = { 3 f TR e

2. What To Look For: See that Ex = Ey = 0. Correct answer.

IL ka(~xi + zk) cos(sx/2L) dx

Solution: E(0, 0, z >> L)
-L (x + 2 )3/2

3 -:-% _LIL x cos(zF) dx + ﬁ':? -LIL 8 cos(F) dx.

But IL P cos( X) dx =0  (odd about x = 0), ;'L 8 cos(nx/2L) dx = @
-L ~L

So £(0, 0, z >> L) = (ko/2%)k.
3. What To Look For: Correct dg. Correct d¥. Correct answer.

Solution: See figure 19. Area of ring = 11r[(3R)2 - RZJ = Bsz

Density of charge = (/Area = Q/&:Rz dA = 2ar dr.
= (density)dA = (Qr dr)/éRz. Distance from dq to axial point = /¥2 + hZ,
gV = k dg//rZ + hZ.

V= j-z- 3R __rdr_ (substitution: u = rz + h2, du = 2r dr)
4R R GER

r 9R2+h

/2 44 = ¥ r/opr 07 - /T TR
4&22 7" y ng[
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Module _ 1
STUDY GUIDE

MAXWELL®S PREDICTIONS

INTRODUCTI0N

With this module, you will reach a milestone in your study of electromagnetic
phenomena. From past modules, you now have (at your fingertips, hopefully!)
the same basic laws of electromagnetism that Maxwell collected together in the
nineteenth century. However, as powerful as these laws were, Maxwell found
that there was & basic flaw - a logical inconsistency - in the one known as
Ampére’s law. He was able to deduce (in advance of any direct experimental
test) precisely the correction that was needed. Hith this correction, the
addition of what is called the "displacement-current" term to Ampére’s law,

it follows that a changing electric field gives rise to a magnetic field, just
a8s a changing magnetic field gives rise to an electric field according to
Faraday's law.

After he had predicted this mutual relationship, Maxwell was able to go on

and predict that the right combination of oscillating electric and magnetic
fields could 1iterally kick itself through empty space. This is the pheno-
menon that we now call electromagnetic waves ~ which include, along with TV
and radio waves, the sunlight that we receive across 93 000 000 miles of space
without any significant loss of intensity other than that which necessarily
follows from its spreading out in all directions.

The development of the theory of electromagnetic waves from the basic laws of
electricity and magnetism that you have studied in past modules is one of the
most beautiful in physics, and at the same time one of the most mathematically
difficult that you will meet in this course. Thus if the arguments at times
seem long ~ bear with it! ~ the total module is fairly short.
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STUDY GUIDE: Maxwell's Predictions

PREREQUISITES

Before y6u begin this module,
you should be able to:

Location of
Prereguisite Content

*State and apply Ampéré’s Jaw {needed for Objectives
1 through 3 of this module

*State and interpret Gauss® law (needed for
Objectives 2 and 3 of this module

*State Faraday's law, and apply i1t to calculate the
enf induced around a closed path {needed for
Objectives 2 and 3 of this module)

*Describe a simple form of electrical oscillator
{needed for Objective 3 of this module)

*Use and interpret mathematical descriptions of one-
dimensional waves {needed for Objective 3 of this
module)

*Calculate partial derivatives of functions of two
variables {needed for Objective 3 of this module)

Ampére's Law
Hodule

Flux and Gauss' Law
Module

Ampére'’s Law
Module

Inductance
Module

Traveling Haves
Hodule

Partial Derivatives
Review

LEARNING OBJECTIYES

After you have mastered the content of this module, you will be able to:

1. Displacement current - Use Ampere's law {including the displacement current)
to find the B field produced by a changing E field, or vice versa.

2. Maxwell's equations - State Maxwell's equations in vacuum {i.e., in the presence
of charges and currents, but with no dielectrics or magnetic materials),

and indicate the physical significance of each.

3. Electromagnetic waves - For a plane electromagnetic wave, use information
about E or B at given times or places, the direction the wave moves, the
freguency, and/or the wavelength to determine other information in this 1list;
also, write down mathematical expressions for the components of £ and B, and
show that your expressions satisfy the appropriate simplified differential

form of Maxwell’s equations.
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STUDY GUIDE: Maxwell's Predictions 3(8 1)

TEXT: Frederick J. Bueche, Introduction to Physics for SC1ent1sts and Engineers
(HcGraw-Hi11, New York, 1975}, second edition

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide along with
Sections 28.1 through 28.5 and 29.1. Optional: Read Sections 28.6 through 28.8.

When you compare Maxwell's equations (28.1) with the same equations in General
Comment 2, you will find slight differences of notation: Jg + g, d§ + d¥, and

- dk + i, Also note that in the absence of a dielectric, in the last "term
of Eg. (28. ld), e becomes just e5. You will find that the derivation of the
simplified differential form of Maxwell's equations, Egs. {28.6) and {28.7), is
guite similar to that given in General Comment 3, between €gs. (9) and {15); take
your pickl

Study the Problems with Solutions and work the Assigned Problems. Then take the
Practice Test, and work some Additional Problems if necessary, before trying a
HHastery Test.

BBECHE
Objective Readings Problems with So]utibns Assigned Additional
Number Problems Problems
Study Guide Text Study Guide (Chap. 28)
1 ‘General Comment 1; A Ilus.3 D, E Quest.d 4
Secs, 28.1, 28.2 28.1 thru 9
2 General Comment 2; B F
Egs. (28.1) in
Sec. 28.2
3 General Comment 3; C 11us, G, H, I Probs. 1,
Secs. 2°.3 thru 28.2 2, 4 thru
28.5, 29.1 9, 12, 14

5_I'nus. = I1lustration{s). Quest. = Que%f%?n(s).




STUDY GUIDE: Maxwell's Predictions 3{(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Hiley, flew
York, 1970; revised printing, 1974)

SUSGESTED STUDY PROCECURE

Read the General Comments on the following pages of this study guide, along with
Sections 34-4 through 34-6 and 35-1 through 35-3.

You will find that Maxwell's equations stated in Tabie 34-2 on p. 636 are exactly
the same as in_ General Comment 2, except that we have used dA (instead of d5) for
the element of area. Your text qives a complete and accurate derivation of the
simplified differential form of Maxweli's equations, Egs. (35-4) and (35-8).
However, the discussion is rather invoived; you should find the corresponding
derivation between Egs. (9) and (15) of General Comment 3 easier to follow. When
reading the derivation in your text, note that E means Ey and B means B,.

Study the Problems with Solutions and work the Assigned Problems. Then take the

Practice Test, and work some Additional Problems if necessary, before trying a
Mastery Test.

HALLIDAY AND RESHICK

(Objective Readings Probiems with Solutions Assigned Additional

Number Problems Problems
Study Guide Text Study Guide
i General Comment 1; A Chap. 34, D, E Chap. 34, Probs.
Secs. 34-4, 34-5 Ex.9 4, 5 19 thru 28;
Quest.d 6 thru
11
2 General Comment 2; B F
Sec. 34-6
3 General Comment 3; [ G, B, I Chap. 35, Probs.
Secs. 35-1 thru 1, 5 thru 9;
35-3 Quest. 2

Ex. = Exampie(s). Ouest. = Question(s).
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STUDY GUIDE: Maxwell's Predictions 3{Sz 1)

TEXT: Francis Heston Sears and Mark Y. Zemansky, University Physics {Addison-
Hesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along with
Sections 36-8 and 36-9. Optional: Read Sections 32-8, 36-1, 36-2, 36-5, and 36-7.

Section 36-8 of your text is devoted to a derivation of the simplified Maxwell's
equations, Eqs. {36-17) through {36-19), which is more detailed than the derivation
given in General Comment 3 between Eqs. {9) and {18), but equivalent to it. You
will probably find you do not need to read both these derivations; take your choice!
In your text's derivation, note that H means H and E means Ey.
Your text uses the guxilliary quantities ] and 3, in the absence of dielectric and
magnetic materials (which will be the casg 15 module) these are simply
proportional to the more femilier fields B and /u and B = ¢ f In Section
36—9 and 1% the optional readings, you will a so enc0unter the po]ar1zat10n

= D - egt and the magnetization M = B/ug - H; but these vanish when there are no
dIEIECtrIC or magnetic materials, and so need not concern you. Maxwell's equations
given in Egs. {36-20) thr0ugh (36-23) reduce to those of General Comment Z, when
the conditions P = ¥ = 0 are used, along with the identifications of H and D above
and the notation changes Qs » g, Ic + i, and ds + df. Some other notation changes
you will encounter are yp + eg¥g, ¢ = ¢g> and Ip + ig.

Study Problems A to C and work Problems DB to I. Take the Practice Test before
trying a Mastery Test.

SEARS AND ZEMANSKY

Objective ~ Readings Probl ems with Solutions Assigned Problems
Humber Study Guide Study Guide

1 General Comment 1 A b, £

2 General Comment 2; B F

Egs. (36-20) thru
(36-23) in Sec. 36-9

3 General Comment 3; C G, H, I
Sec. 36-8




STUDY GUIDE: Maxwell's Predictions 3{(¥s 1)

TEXT: Richard T, Heidner and Robert L. Sells, Elementary Classical Physics

{Allyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along with
Sections 35-1 throuah 35-3.

Your text gives a very nice and direct demonstration in Section 35-3 that a travel-
ing pulse of crossed % and B fields is a solution of Maxwell's eqguations. However,
it does not derive the differential form of Maxwell's equations. for plane waves:

if you want to see more discussion of this topic than is found in General Corment 3,
refer to one of the texts listed under Additional Learning Materials below. The
first pade of Section 35-1 in your text and General Comment 1 in this study guide
give alternate versions of the argument for the displacement-current term in
Ampere’s law; take your choice! When reading your text's discussion, note that
there is no reason for the hemispherical surface in Figure 35-2 to touch the edge

of the plate; this is just an accident of the drawing.

Study the Problems with Solutions before working eroblems D through I. Then take
the Practice Test, and work Problem 35-1 if necessary, before taking a Mastery Test.

WEIBHER AND SELLS

Objective Readinos Problems with Solutions Assfgned Additional

Number Problems Problems
Study Guide Text Study Guide

1 General Comment 1; A Ex.2 35-1 b, E
SECO 35-]

2 General Comment 2; B F
Sec. 35-2

3 Genera? Comment 3; (W G, H, I 3541
Sec. 35-3

Ax. = Example.
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STUDY GUIDE: Maxwell's Predictions 4

GEHERAL COMMENTS

7. The Consistency Argument for the *Displacement Current®

Let us calculate the magnetic field around the long wire in Figure 1. it is a
Jittle different from the Jong wires you have seen in this course before: there
is a capacitor in the middle of it. But this does not, of course, preclude a
pulse of current for a short time, as the capacitor charges up - or a pulsating
back-and-forth current for an indefinite period of time.

We first construct a circle of radius r, such as C]. The current through the
surface S, bounded by C; is just i,; and thus Ampere’s law yields

yai
upip = dt, B « &f = 2arB(r) or B(r) = oL, (1)
, C, C C4
io ig ip ig @ iy
—p — — - —
Figure 1 \\ %\ N \
S.'!, s ] l}
B = or B = 2gla B'= 0721 T
=r
_ pgi
B = 25r

We are not at all surprised, of course, when a repetition of this calculation
using 02 and 52 yields the same result. But we are in for 2 rude shock when we
try c3 and-SB; there is no current through 53; therefore the original form of
Anpére’s law yields

0= @;;3 B - df=2arB(r) or B(r) =0 at(y! (2)

When we get down to 04, its surface again cuts through a current 10, and once
again we get the result (1).

Is this possible? Can B really suddenly drop to zero just when we get opposite
the gap of the capacitor? It hardly seems so; we must have somehow missed some-
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STUBY GUIDE: Maxwell's Predictions 5

thing when we used S;. The most obvious thing that we did not use was the flux
(or E field) in the space between the capacitor plates - and clearly this flux is
related to the current iy in the wire. Since the electric field of a capacitor
lies ostly between the plates, and the charge resides mostly on the inner surfaces
of the plates, Gauss' law applied to a closed surface containing the upper plate
yields

Since io is just the derivative of g,
io = dg/dt = £ d@E/dt. (4)

Honderful - this solves our probiem!! If we define the "total® current by

Teor =1 % g (5)
where iy = €5 d8,/dt, and use this instead of just i in Ampere’s law:
?c § * d‘i = uoitot = 130(‘i + id), (6)

then it does not matter which of the circles C] through 04 we use - we always
find, consistently, that '

B(r) = noiOIZar! (7)

If we happen to use a surface that intersects the wire, then we pick up 1 = io
and id vanishes (€ = 0 outside the capacitor); if we use a surface that passes
through the capacitor gap, we pick up i, = io and i vanishes. (There is no "true"
current between the capacitor plates.) For historical reasons, id is called the
"displacement current.”

You may wonder how it is that we (or Maxwell, for that matter) can get away with
making changes like this to an equation, such as Ampere's law, which was based

on experimental observation. The reason is that the added term id.was too small
to be observed in the phenomena studied up to Maxwell's time. On the other hand,
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STUDY GUIDE: Maxwell's Predictions 6

it 15 absolutely essential to the now-familiar phenomenon of electromagnetic waves!

2. Haxwell's Equgtions

Here we record, for reference, the integral form of Maxwell’'s equations in enpty
space - i.e., where there are no dielectric or magnetic materials.

Gauss' law for electricity: £ q':s £.65= g{inside S). {8z}
Gauss' law for magnetism: qg B.d5=0. {8b)
de
Faraday's law: §b'f'- di = tB. (8c)
~ + - dQE
Ampera"s law: ¢b'§ e dg = ¥yl + ¥6€6aE - {8d)

In the last two, % means the flux through any surface bounded by the curve C,
and i is the current through such a surface.

Your first reaction may be that Gauss' law for magnetism is new to you; bui really
it is not! In regions where there are no electric charges, the right-hand side of
Eq. {(8a) is zero, and Gauss' law for electricity becomes just the statement that
the electric flux through any closed surface is zero - or, equivalently, that in
such regions electric field 1ines never end. You tacitly used tke corresponding
property of magnetic fields when you c2lculated, say, the field B inside a toroid
by using Ampere’s law: you assumeéd the flux was constant arcund the toroid - that
field lines did not abruptly end. This is just the content of £q. (8b). The
difference between the right-hand sides of Eqs. {8a) and (8b) arises fror the fact
that (as far as we know) no magnetic "charges” exist anywhere.

3. Plane Electromagnetic {aves

Undoubtedly, electromagnetic waves are a difficult phenomenor to comprehend properiy.

This difficulty starts with the problem of visualizing just exactly what is going
on; There are £ and B fields oscillating throughout three-dimensional space, and
these oscillations somehow travel through space - difficult enough to visualize in
3-space, et alone describe by diagrams on a flat sheet of paper!

Honetheless, the diagrams in Figures 2, 3, and 4, contrived for this purpose by
various people, may help to explain what is going on. The first diagram, |,
Figure 2, shows a pulse of constant amplitude traveling along the x axis with
velocity €. 1t can, in fact, be shown that an electric field pulse traveling
along as in that diagram must be accompanied by a magnetic field pulse, according
to Maxwell's equations - and vice-versal That is, a pulse of £ and 8 fields
together is a valid solution to Maxwell's equations. To the extent that we have
confidence that those equations are correct, they predict the existence of such
pulses as an observable phenomeénon.
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Figure 3

Figure 2

Y N
L R ety = ™ 1T
=51
4
P_. y
1;-P A B j_..i-—b
S et
j’ Successive *snapshots® of \¥

a plane sinusoidal electro-
magnetic wave advancing toward
you. This is,a representation N .

<P of the € and B fields in a
plane through point P; the { Figure 4%
oscillation of their strengths
is indicated by variation in

'\ the densities of field lines.

] et iy o &2t il ’ﬁ
be § AJr 4 == IB L‘E ‘|‘ ‘!-:ll
1o - e TV

T “ iy g’  g—
250k 1-et™
o ¥, B
d-.-o

*This diagram was taken from Fundamentals of Physics, by David Halliday and Robert
Resnick %Hi]ey, New York, 1970; revised, 1974}, with permission of the publisher.
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STUDY GUIDE: Maxwell®s Predictions 8

I1f we now imagine a series of such puises traveling along one after another, we
have a wave train. In Tact, the most easily produced electromagnetic waves are

a kind of wave traia known as a sinusoidal wave. Since it is even harder to draw
pictures of wave trains than of individual pulses, it is customary to draw only
the field vectors for points on the axis alorg the direction of propagation; such
a diagram for a sinusoidal plane wave is shown in Figure 3. (You will now see why
this is called a sinusoidal wave.) The term “plane wave" refers to the fact that
the E and B fields are the same throughout any on2 plane perpendicular to the axis
of propagation (the x axis in Figure 3).

Another view of a plane sinu%pida] electromagnetic wave is shown in Figure 4.
Here you are looking at the E and B fields in a plane parallel to the yz plane.
The y axis points up in this picture, and the z axis points to your 1eft; the
wave 1S advancing toward you, along the positive x axis. Of course, there is
nothing special about the x axis as far as an electromagnetic wave is concerned;
the waves shown in the pictures could just as well be traveling along the y or z
axis, or in some arbitrary direction. However, there are several characteristics
of the waves shown that are required by Maxwell’s equations to be true of any
plane electromagnetic wave: .

(1) Electromagnetic waves in vacuum always travel with the speed of light
c = 3.00 x 108 m/s.

(2) The E and B fields are in phase, i.e., their maxima occur at the same
place.

(3) Electromagnetic waves are transyerse, and furthermore E is perpendicular
to B. Also, the directiong of £, B, and € form a right-handed set.
In terms of unit vectors, E x 8 = C.

When we come to a quantitative treatment of electromagnetic waves, we are
imnediately faced with the second part of the complexity of understanding these
waves. You probably feel, justifiably, that the various Maxwell's equations that
have served so w211 in s0lving problems up to this point are complicated enough

to apply. However, using them directly on electromagnetic waves becomes much
harder. 1In actual fact, when people deal with electromagnetic waves, they custom-
arily use an apparently different, but mathematically equivalent, set of equations
known as the “"differential form™ of Maxwell’s equations - that is, a set of equa-
tions expressed in terms of derivatives. Sad to say, proving the equivalence is

& very involved piece of work; and furthermore, these latter equations are too
cunhbersome to write down in their generality without using notation with which

you are not likely to be familiar!

gut the good news is that much of this complexity (though not all of it!) goes
avay if you loo¥ just for solutions of a very particular form, namely, plane
wayes traveling along, say, the x coordinate axis. Explicitly, let us look for
solutions in which the fields are of the forms

Bx = By = Ex = Ez =0 everywhere,

8, = Bz(x, t) and Ey = Ey(x, t) (i.e., no dependence on y or z). (9)
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STUDY GUIDE: Maxwell's Predictions 9

First, we note that the first two of Maxwell‘’s eguations, Gauss' laws for T and
B, are immediately satisfied by such fields: the flux lines are continuous, as
you can see by drawing a sketch of them, and as they are required to be in- the

absence of charges.

Our next step is to cast the second two of Maxwell’s equations in the absence of
charges,

$E - df = -dog/dt  (Faraday’s),
$ 8 - df = equyldec/dt)  (Ampire's), (10)

into their differential form for the simplified case of fields satisfying Eq. (9).
Applying, first, Faraday's law to the upper rectangle in Figure 5, remembering
that E, = 0 by Eq. (9) above, we get

Ey(x + 8X, t) By - Ey(x, t) Ay = —[aBz(x, t)/at] ax ay. (1)

Figure 5 {:}
for

x§ thdx

’a" P ..: x
{””” e ™

You will notice that Bz has been evaluated at the left edge of the rectangle,
whereas its average value is needed for exact equality; however, Eq. (11) will
become exact when we take the 1imit ax » 0 beiow. Also, note that the time
derivative is a partial derivative, since Bz depends on X as well as t. The
left-hand side can be simplified by setting

Ey(x + 8, t) = Ey(x, t) +.[3Ey(x, t)/ax] ax, (12)

which also is allowable because of the 1imit ax -~ 0 fo be taken below. Thus,
Faraday’s Jaw reduces to

Ey(x, t) + [aEy(x, tj/ax] ax sy - Ey(x, t) ay = -[aBz(x, t)/at] ax ay.(13)

Canceling a term, dividing by Ax Ay, and taking the limit ax + 0 to validate
the approximations above yields the simplified differential form of Faraday's
law, valid under the conditions (9):
{Simplified differential form
3E,(x, t)/ax = -aB,(x, t)/zt. of Faraday's law in empty space.] (14)
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In exactly the same way, 2pplying Ampere's law (with 1 = 0) to the lower rec-
tangle in Figure 5 yields

aB_(x, t)/ax = -u 3t (x, t)/at]. [Simp'lified Qifferentiai (]5)
(%, t)/ ool y( » t)/at] forn of Amporers 1o
in empty space. ]

Another important equation can be obtained by differentiating the first of these
equations with respect to x and the second with respect to t; this makes the
right-hand side of Eq. (14) just the negative of the left-hand side of Eq. {15).
They can then be combined to yield

(16)

2 2 _ 2 2 .
3 Ey(x, t)/ax" = uﬂeo[a Ey(x, t)/3t”]. [Wave equation for Ey-]

Expressions of the form

Ey(x, t) = Em sin(kx + ot), [wave traveling in the x direction.] (17)

satisfy the above wave equation, as you can readily check by direct substitution,
provided k2 = uoeom?. This expression should look familiar to you, from the
module Traveling Yaves, and, hopefully, you will remember that the speed of such

a wave is given by v = w/k. (If you do not remember the argument leading to

this result, you should really look it up.) Since the speed of an electromagnetic
wave i1s usually denoted by c, we have

c=wks= Ji/uoeo. (18)

This fundamental relationship between the speed of electromagnetic waves and
the constants occuring in the equations of basic electromagnetism (since then
verified experimentally to a high degree of accuracy) was one of the very
impressive successes of Maxwell's theory.

Combining Eqs. (14) and (15) the other way around (this is left as a prcblem}
yields an equation of the same form as Eq. (16) except that Ey is replaced by Bz‘
That is, B, satisfies the same differential equation as Ey, and it can thus be
expressed in a similar form;

B, = B, sin(k’x £ vt + ¢). (19)

(The phase constant 4 is necessary because we do not yet know the phase relation
betveen Ey and Bz') Substituting Eqs. (17) and (19) into Eq. (14) yields

KE_ cos(kx # wt) = ?b'Bm cos(k’x + w’t + 4). (70)
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This will be satisfied for al7 values of x and t if and only if

k=k", 0” = W, é&=0, B, = ;(k/m)Em = ;Em[c. (21)

Thus we have verified the claim [No. (2) on p. 8} that the T and B fields are in
phase (& = 0). The ¥ sign in the last of Eqs. (21) is just what we need for the
right-hand property noted above [Ho. (3)]; and we have also found another charac-
teristic property of electromagnetic waves:

() g} = clg|.

Since you will be using expressions of the form of Eq. (17) in working the prob-
lems of this module, we close these comments by recalling the relations. among

ks w, the wavelength A, the frequency f, and the wave speed c that you learned
in the module Traveling Maves:

A = 2afk; w = 2af; c = w/k = Af. (22)

If you cannot recall how these relations are obtained, refer to Traveling Haves
to refresh your memory.

ADDITIONAL LEARNING MATERIALS

Buxilliary Reading

Stanley Williams, Kenneth Brownstein, and Robert Gray, Student Study Guide
with Programmed Problems to Accompany Fundamentals of Physics and Physics,
Parts I and IT by David Halliday and Robert Resnick {Wiley, New York, 1970;.
Objective 1: Section 33-4;
Objective 2: Section 33-5;
Objective 3: Sections 34-1 and 34-2.

Various Texts

Frederick J. Bueche, Introduction to Physics for Scientists and Engineers {McGraw-
Hi11, New York, 1975), second edition: Sections 28.1 through 28.5 and 29.1.

David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New York, 1970;
revised printing, 1974): Sections 34-4 through 34-6 and 35-1 through 35-3,

Francis Weston Sears and “ark Y. Zemansky, University Physics {Addison-Hesley,
Reading, Mass., 1970), fourth edition: Sections 32-8 and 36-7 through 36-9.

Richard T. Weidner and Robert L. Sells, Elementary Classical Physics (A1lyn and
Bacon, Boston, 1973), second edition, Yol. 2: Sections 35-1 through 35-3.

Your attention is especially directed to Section 35-1 of Weidner and Sells for an
alternate presencation of the arguments for the displacement-current term, and to
Section 35-3 of the same text for a demonstration that a moving pulse of crossed
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T and B fields is a solution to Maxwell's equations. Also, Section 28.4 of -Bueche
seems to give the most straightforward derivation of the simplified differential
form of Maxwell's equations.

PROBLEM SET WITH SOLUTIONS

Some Facts You May Wish to Use While Working These Problems

¢ = 3.00 x 10° s, by = 47 10~7 ¥b/A m. €p = 8.9 x 10712 2 of,

For fields satisfying B, = By = Ex = Ez = 0 everywhere, and B, = Bz(x, t) and
EY = gy(x, t) (no dependence on y or z), Maxwell’s equations simplify to the
conditions

3§y13x -3B,/3t (Faraday's)

and

9B,/ 3x -eouo(aEylat) {Ampere’s).

A(1). A long cylindrical conducting rod with radius a is centered on the x axis
as in Figure 6. A narrow saw cut i made in the rod at x = b. An increasing
current iy = AL {with A > 0) flows in the rod toward the right; by some
ingenious means, it is arranged that this current is uniformly distributed
over the cross section of the rod. At t = 0, there is no charge on the cut
faces near x = b.

{a) Find the magnitude of the total charge on these faces, as a function
of time.

(b; Use Gauss® Jaw to find E in the gap at x = b as a function of time.

(c) Sketch or describe the magnetic lines of force for r < a, where r is

the distance from the x axis.

{d} Use Amp2re’s law to find B{r) in the gap for r < a.

e) Compare with what you get for B(r) in the rod for r < a.

&+~ A y— r

________ = -_—Wr,

ix=b
Figure 6 Figure 7

Solution

(a) Since i, = At = do/dt, and G(0) = 0, we must have g = Jiy dt = (1/2)At2.
{b) Applying Gauss' 1aw to a closed surface enclosing the left-hand face of the
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q . (28t
eo-aa Eo‘ﬂ'a )
(c) See Figure 7: the current is assumed to be into the paper and increasing.
This diagram is valid both inside the rod and in the gap.
(d) Apply Ampere's law, ¢§ . dg = pg('l + 1d) to a c1rcu1ar path of rachus rin
the diagram. In the gap, i = 0 and ig= 0(d¢E/dt) o™ (dE/dt) = Atr !a
We thus get 2mB = poAtr !az and

) (1/2)pgﬂtr

1!'62

(e) Inside the rod, iy = 0, and through a circular path of rad1us r the current i
will be (area of path/cross-sectional area of rod) x i (r !a )1 So applying
Ampere s law to such a path yields 2mrB = po(r 1a2)1 3 and the f1e1d is again

(1/2)p0Atr
=T.

yif-|

cut yields g = go¥p = EoﬁazE. Therefore £ =

B(2) Identify the Maxwell equation that is equivalent to or includes:

Ea) Electric lines of force end only on electric charges.

b) The displacement current.

E ; Under static conditions, there cannot be any charge inside a ¢:nductor.

A changing electric fie]d must be accompanied by a magnetic field.

(e) The net magnetic flux through a closed surface is always zero.

(f) A changing magnetic field must be accompanied by an electric field.
(g) Magnetic flux lines have no ends.

(h) The net electric flux through a closed surface is proport1ona1 to the
total charge inside.

(i) An electric charge is always accompanied by an electric field.

(3) There are no true magnetic poles.

(k) An electric current is always accompanied by a magnetic field.

1) Cowlomb's law, if the equation for the electric force is assumed.

m) The electrostatic field is conservative.

Solution

(1) g é T - d§ =g (insideS)  (Gauss' Law).
2 & B.d =0 (Gauss' Law for Magnetism).
(3) H E-db=-dg/dt (Faraday's Law).

() ¢, B - db = uyi + uye (da/dt)  (Ampere’s Law).
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In terms of the equation numbers above: (a) = (1)}; (b) = (4); (¢} = (1); (d) = (4);
(e) = (2); (f) = (3); (g) = (2); (h) = (0)s (i) = (0); (3) = (2); (k) = (4);

(1) = (1)s (m) = (3). [in regard to (m), dig back in your memory to recall that

a conservative force can be defiped by the requirement that 95 Fe.di= 0.]

C(3). The plane electromagnetic wave from a distant radio station produces a
vertical magnetic field with amplitude BO' The radio station is directly
north of you, and transmits on a frequency fs.

(a) How should you orient your coordinate system to make use of the
simplified differential form of Maxwell's equations (SDME) derived in this
module?

(b) With respect to this coordinate system, write expression(s) for the
components of the magnetic field as a function of X, y, z, and t.

(c) Use the SDME to obtain a wave equation for the nonzero component of B.
What information does this wave equation give you regarding the parameters
in your expression(s) in part (b)?

(d) Which components of E must be zero?

(e) Apply the SDME to your expression{(s) in part (b) to obtain expression(s)
for the derivatives of the nonzero component of E.

(f) Write a suitable expression for this component, and show that it
satisfies your expression(s) in part (e).

So]ution

(a) The x axis should point either away from or toward the station; let us make
it point south, so that the wave travels in the +x direction. The z axis should
point up or 3own, so that B lies along it; let us make it point up.

Then the y axis must point east, for a right-handed coordinate system.

(b) B, = B, =08, = BO sin(kx - wt). [0f course, we could also use cos(kx - wt),
or sin(kx - wt + ¢), etc.]

(c) Differentiating the simplified form of Faraday's law with respect to t yields
aZE /3x ot = -aZB /atz' and d1fferent1atrng the simplified Ampére s law with
respect to x y1e]ds aZB /ax2 ~€gMy 9 gy/at x. The term 3 E /ax 3t occurs in
both these equations; we can thus combine them to obtain 828 /Bx = EO"O 2B /at
If the expression for Bz in part (b) is substituted into th1s equa;ion,zwe get
---2 ‘ - = ey ] - . ] ] =

k"B, sirkx - wt) = -w €44Bo sin(kx - wt); this requires that k“ = w €ggs
or kfw = #aouo(- ]/c)
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] ] ]

(d) E, = €, =0, in order to make E x B = c.

(e) Direct differentiaticn and the SD¥E yield agy/ax = ~aBZ/dt = +uBy cos(kx - wt)
and 3 /3t = -(uuoeo)(asy/ax) = ~(k/ugey)By cos{kx - ut).

(f) Ey = t:B0 sin{kx - wt). This satisfies the first equation above because

ck = c{w/c) = w and cw = c(ck) = X = kfeouo.

Problems

p(1). A parallel-plate capacitor with circular plates 20.0 cm in diameter is
being charged as in Figure 8. The displacement current density throughout
the region is uniform, into the paper in the diagram, and has a value of
20.0 A/m>.

(a) calculate the magnetic field strength B at a distance R = 5.0 ¢m from
the axis of symmetry of the region.
(b) Calculate dE/dt in this region.

e x *
£ is intox
X X pIper x

d%@ 5 :“'““/-

Sovree ’ >
‘dH-erurl'.io;. & a b X
potential
Figure 8 Figure 9 Figure 10

E(1). The capacitor in Figure 9 consisting of two circular plates with area
A =0.100 m® is connected to a source of potential V¥ = Vpax sin wt, where
Vmax = 200 V and w = 100 rad/s. The maximum value of the ﬁisp]acement
current is ig = 8.9 x 10°% A. Neglect "fringing” of the electric field
at the edges of the plates.

(a; What is the maximum value of the current i?

(b} What is the maximum value of dfg/dt, where 9g is the electric flux

through the region between the plates?

(c) What is the separation d between the plates

(d) Find the maximum value of the magnitude of B between the plates at a

distance R = 0.100 m from the center.

F(2). Name and state the four Maxwell equations in vacuum.

6(3). Under what conditions do the following expressions satisfy Maxwell's
equations? (A, a, and b are constants.)
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{a) E, = Ab{x - at), B, = A(x - at).
®) Ey = pelX - at), 8, = Apel* - at)

H(3). {(a) Write an egquation for the electric field component of a sinusoidal
electromagnetic plane wave traveling in the negative x direction, having
an arplitude of 1.40 V/m and a wavelength of 600 m.
{b) Hhat is the freguency of this wave?
{c) How far a2part are two points where the E fields are 60° out of phase?
(d) Find the amplitude of the magnetic field component of this wave.

1{3). The B Field in Figure 10 at a given instant of time iS independant of y and z,

bgt points in the positive z direction and has a magnitude that increases
linearly from zero to Bp hetween x = a and x = b. What do Maxwell’s
equations tell you about E, for a < x < b?

Solutions

9{1). (a) B = (1/2)poa x {displacement-current density) = 6.3 x 10"7 1.

(b) dE/dt = 2.20 x 102 Y/m s.

E(1). (a) 8.9x10°%4 (8) 1.00 x10° v s, (c) 2.00mn. (d) 5.6 x 10712 1.
[Did you get too large a value for {d)? 1If so, check that you used the correct
di splacement current.

F{2). (a)(1) Gauss’ law for electricity:

eoPs E - d§ = g (inside S).

(2) Gauss' law for magnetism:

$. B - &=¢.

{3) Faraday's law of induction:

o E - df = -dag/dt.

(8) Ampere’s law {corrected):
¢ B - df = uyi + yyey(dep/dt).

In {3) and (4), & means the flux through any surface bounded by the curve C, and
i is the current through such a surface. :

6{3). {a) The simplified Maxwell’s equations yield
Ab = +aAA and A = +eouoaﬂb.

These will be satisfied if b = a = /I?eouo = c.
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(b) In the same way, Maxwell's equations will be satisfied if

b=1/a-= #eouo = 1/c.
H(3). (a) Take the y axis along E; then Ey =E. sin(kx + ot + &) in general,
though we can usually assume ¢ = 0. E_= 1.40 V/m, k = 2a/x = 1.05 x 107%/m, and
© = ck = 3.14 x 10%s.
(b) 7= w2z = 5.0 x 10° Hz.
(c) 2/6 = 100 m.

~ ) g
()8 =E/c=47x07T.

1(3). The araph Figure 10 tells us the value of aleax; so we refer to the simplified
form of Ampere's law. This tells us that 3Ey!3t = -cz(aleax) = -czBol(b - a)
for a < X < b; that is, E is increasing with time in the negative y direction.

PRACTICE TEST -

Some Facts You May Wish to Use While Horging These Problems
c=3.00x10%a/s. =4z x 107 W/Am. gy = 8.9 x 10712 N me.

For fields satisfying B, = By =E *E = 0 everywhere, and Bz = Bz(x, t) and
Ey = Ey(x, t) (no dependence on y or zj, Maxwell's equations simplify to the
condi tions . ]

agyjax = - aleat (Faraday's)

and

aleax - -eouofaﬁylat) (Ampere's).

1. A parallel-plate capacitor has square plates 1.00 m on a side, as in Figure 11.
There is a charging current i = 2,00 A flowing into the capacitor.
(a) What is the displacement current through the region between the plates?
(b) #hat is dE/dt in this region?
(c) YWhat is the displacement current through the square (dashed) path between
the plates?
(d) what is B - d2 around this square path?

2. {a) Sstate Maswell's equations in vacuum.
{(b) In your answer to {a), identify:

gi) Faraday's law of induction,
ii) The displacement-current term.
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Practice Test Answers I L

1. (a) 2.00 A. (b) 2.20 x 10 ¥/ms. (c) 0.50 A. (d) 6.3 x 107 yp/m.
2. 80?5 E . dﬁ = q.

¢ 8. dh=0.
$o E -+ df = -dg/dt. (i)
$¢ g.d¢ = uoli + golde /dt)]. (i)

3. (a) Down. (b) £=2.25x10° Hz. =133 cm (c) 1.00 x 1074 1.
{d) Horth and east, respectively. (e) B, = By =0, B, = -Ey/c.
The given equation is of the form Ey = E_ COS (kx + wt),
50 Bz = -(qm/c) cos{kx + wt). Substituting these into the two simplified
Maxwell’s equations gives —KE_ sin{kx + wt) = -(wEm/c) sin(kx + wt) and +(kEy/c)
sin{kx + wt) = +eou0wEm sin{kx + wt). Since eg¥p = 1/c2, these are both satisfied
provided w = ck; the values given in the problem satisfy this condition.
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FAYWELL’S PREDICTICNS Date

Hastery Test Form A pass recycile
] 2 3
Hame Tutor

Some Facts You May Wish to Use ¥hile Working These Prpble?s
= 8z x 1077 ¥b/A m. £y = 8.9 x 10712 ¢/ 2.

c =3.00 x 103 nfs. vy

For fields satisfying B, = By =t = Ez = 0 everywhere, and Bz = Bz(x, t),
E = Ey(x, t) (no dependence on y or z), Maxwell's equations simplify to the condi-

Yy
tions

agy/ax = -3B,/3t (Faraday’s), aleag = -eono(aEy/ét) (Ampeére‘s),

1. The parallel-plate capacitor in Figure 1 is made from two rectangular meta?
plates of the dimensions shown, spaced 5.0 mn apart. Along the dotted rec-
tangular path between the plates,

68« & = 2.00 x 1072 wb/m.

a) What is the displacement current through this path?
b) What is the (total) current i?

c) If the potential difference between the plates is V, what is dV/dt?
(
(

a) State Maxwell's equations in vacuum.
b) In your answer to (a), identify:
i) Ampere’s law.
i1) The equation that tells you whether electric field 1ines terminate,
and where.

3. A plane electromagnetic waves is traveling to the right along the x axis, as
shown in Figure 2. At x = a, E,{(a, £) = 0, and Ey(a, t) = Ep cos(ut) with Eyp
positive and w = 3.00 x 10° rad/s.

(a) At x = a, are any of B, > By, and B, identically zero {i.e., at all times)?
(b) Hrite expressions for the nonzero components of E(x, t) and B(x, t).

tvaluate the constants occurring in these expresssions as completely as possible.
(c) show that your expressions satisfy Maxwell's equations. '

|
Y
i L Direction o_{')
yave motion
o€ ——y X=2
4 Il - a
N P ——— O.2com{ ¥ Loom - ’
Figre . Y
H z
i s
Edge view Figure 2
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MAXHELL'S PREDICTIGNS Date

HYastery Test Form B bass recycle
1 2 3
Hame Tutor

Some Facts You May Wish to Use ¥While Working These Problems

c=300x W ajs. wy=dax 107 w/Am ey =89 x 1072 Fual,
For Tields satisfying Bx = By =E = E, =8 everywhere, and B, = Bz(x. t),
Ey = Ey(x. t) (no dependence on y or z), Maxwell’s equations simplify to the
cenditions

ax = -38,/at (Faraday's),

53213x -snuo(aEylat) (Ampére's).

1. The electric field between the circular p]ates of a plane, para;lel—plate
capacitor of radius 10.0 cm is given by E t sinut, where E = 2.00 x 10 v/m
and w = 6.0 x 103 rad/s.

{a) What is the maximum displacement current through the region between the
plates?

(b) what is the maximum magnetic field at a radius of 5.0 cm from the axis
of the circular plates?

2. (a) State Maxwell's equations in vacuum.
(b) In your answer to (a), identify:
(i) Gauss' law for the electric field.
(ii) The condition that magnetic field lines do not terminate.

3. A distant radio station, transmitting at 1.50 = 106 Hz, produces a vertical
electric field with Ey = +2.00 u¥/m (its maximum value) at the origin of the
coordinate system when t = 0. This wave is progressing in the negative
direction alono the x axis.

(a) 9btain expressions for all the components of E and B as functions of x and t.
(b) Exprass Bz as a function of t at the point x = y=z= 50 m.
(c) Show that your expressions (a) satisfy Maxwell's equat1ons
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MANMELL'S PREDICTIONS Date

Mastery Test Form C pass recycle
1 2 3

Hame _ Tutor

Some Facts You May Wish to Use While Working These Proiylems

c=3.00x10%m/s.  wy=8xx 07 wyp a5 = 8.9 % 1072 ol

for fields satisfying B, = By =E =E,=0 everywhere, and B, = Bz(x, t),
Ey = gy(x, t) (no dependence on y or z), HMaxwell's equations simplify to the

conditions

aEyfax

aB,/ax = -eouo(aE}/at) (Ampere’s).

-2B_/at (Faraday’s).

1. The capacitor shown in Figure 1 is made from twe circular plates with a radius
r = 9.100 m, separated by a distance d = 2,00 x 103 m. Heglect “fringing” of
the electric field at the edges of the plates. At a given instant there is a
magnetic field of strength B = 5.0 x 10-10 T at a point midway between the
edges of the two plates.
(a) Find the displacement current iy through the region between the plates.
(b) Find the current i flowing into the capacitor.
(c) Find dE/dt in the region between the plates.

2. {a) State Maxwell's equations in vacuum.
(b} In your answer to (a)}, identify:
(i) Gauss' law for the magnetic field.
{17) The conservative nature of the electrostatic field.

3. The star Betelgeuse is directly overhead (i.”., on your positive x axis).
Assume it_has emitted a sinusoidal electromagnetic wave with wavelength
6.0 x 10-3 m that is now striking the Earth.
(2) Give as complete a mathematical description of this wave as you can; i.e.,
give expressions for the components of the electric and magnetic fields,
and evaluate as many of the constants as possible with the information given.
(b) Show that your expressions satisfy Maxwell's equations.

8 gur |V

Figure 1 C@
&EzéL’

\—--——/

1;
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MAXKELL'S PREDICTINNS A-1

MASTERY TEST GRABING KEY - Form A

1.

What To Look For: (b) Check that the correct displacement current is used,

i.e., id(tota]) rather than just ig-

Solution: (a) According to Ampére's law, &. B - d? = . (i + i,). Between the
—_— C 0 d

plates, i = 0. Thus, the current passing through the rectangle is
-+ -+
ig= (fug) 90 B - de= (2.00 x 107%)/(4z x 1077) = 15.9 ma.

(b) Assuming the displacement current is uniformly distributed over the area of
the plates, 14¢¢5ta1) = 5-01d(rectangle) = 3% ™A

{c) The petential difference V between the plates is V = EDR, where D is their
separation. Thus

i s B A"E-i’f-d" here A is th of the plates. Thus
1d(t0ta]} 50 E’t':—— Eg af"" D a— N wner e area e p aces., u

i D -2 -3
dv _ “d(total)” _ (8.0 x 1072}(5.0 x 1073) _ 9.0 x 107 V/s.

dt EOA (8.9 x 10722)0.50
SoJution: > > N
g9 ¥ E - dA = g (ii);
-+ -+ . -+ -+ -+ - ) d’:’E) .

What To Look For: (b) Mote that a phase constant {-ka) must be included in

the argument of the cosine to obtain Ey = Eg cos{wt) at x = a. The argument

of the cosine could alse be the negative of the one shcwn; either one works,

since cos{-a) = cos{a).

Solution: (&) Bx =B, = o0 at all times (everywherel).

(b) E, = Ey cos[k(x - a) ~ wt]. B, = +E /c. (Yote that E, = 9.)
a=9,00m, ¢ is given in the problem, and k = w/c = 1.00 x 10"%/m. Thus
ka = 1.00 x 1073 rad.

(c) These expressions satisfy the conditions for the simplified form of
Maxwell's equations given at the top of the test page. Substituting them into
these equations gives us

-kEg sin[k{x - a) ~ wt] Z -m(Eolc) sin{k{x - a) - wt]; and
-k(Eg/c) sinfk{x - a) - wt] Z -£qugtky sinfk(x - a) - «t].

Since egug = Ilcz, these equations are both satisfied because we set k = «/c,
above. ,
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HAXWELL'S PREDICTIONS B-1

MASTERY TEST GRADING KEY -~ Form B

What To Look For: (b) Check that the correct value is used for the displace-
ment current, 1.e., 1d(max) rather than 1d(max)'

Solution: (a) iy = ¢, doc/dt = eoﬂRz dE,/dt,  where R is the radius of the
plates. id = -eonRZmEm cos of. The maximum value of this is
4(max) = eonﬁzmﬁm = (8.9 x 10~ %%)=(0.100)2(6.0 x 103)(2.00 x 103) = 3.4 pA.
- + -
(k) By Ampere's law: Zaerax =f:.B- d£‘= Yoid(max) = (]/4)"01d(max)' Thus

uqi -7 -6
- 0°d(max) _ (4= x 107°){3.4 x 10"} _ 3.4 x 10712 7.

Solution: (i) e, 4 E - df = q. (i1) # B - dh = 0.
$cE. dt = ~dég/dt. 5B - a2 = uyli + ¢, de/dt).

What To Look For: (a) Hote that the argument of the cosine must be kx + ot,
or -kx - wt, 1n order for the wave to travel in the negative x directign. _
There must also be a minus sign in the expression for Bz, to make E x B = c.

Solution: (a) E, <€, =B = By = 0. Ey = Egy cos(kx + wt).
B, = -(Eolc) cos(kx + wot). Eg = 2.00 wW/m, Eg/C = 6.7 x 10-]5 T, and

w=2af = 9.4 x 100 Hz. Thus k = o/c = 3.14 x 10" %/m.
(b) Bz(a, a, a, t) = -(Eolc) cos(ka + wt), where 2 = 50 m.
Bz(a, a, a, t) = -(Eolc) cos(1.57 rad + wt) -or +(E0/c) sin wt.

(c) These expressions satisfy the conditions for the simplified form of
Maxwell's equations given at the top of the test page. Substituting them yields

Ky sin(kx + ut) l_ (Eg/c) sin(kx + ot) and
+#(Ey/c) sin(kx + at) z +equy Eg Sin(kx + ut).

Since ggug = llc2 and we set k = w/c above, these are both satisfied.
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MAXKELL'S PREDICTIONS -1

MASTERY TEST GRADING KEY - Form C

1.

(a) By Ampere's law, 2arB=¢ c§ . d? = ”O'id (i = 0 between the plates)
where r is the radius of the circular plates, and of the path C. So

-10
- ZarB _ 25(0.100)(5.0 x 107 ) . 50 .
s 4= x 10

14
(b) 7 = i = 0.250 mA.
(c) iy = edop/dt = eonrszldt; 0

i -4
dE/dt = —9y = — 2.5 10 5= 8.9 x 10% V/m 5.
sowr (8.9 x 10 "“);(0.100)
Solution: £g ?S‘E .- dB = g. (i) g 8. d8=o0.
(i1) ¢ E - di = -dep/dt. gc B+ df = uyli + g do/dt).

What To Look For: (a) Check that the argument of the cosine is kx + wt, or
-kx - wt, so that the wave travels in the negative x direction. Also, there
must be a minus sign in the expression for Bz, in order that E x B = c.

Solution: (a) Choose the y axis to lie along the direction of £, and set your
clock so that Eyis a maximum at t = 0 (this avoids a phase constant ).

Then Ex = Ez = Bx = By =0,

Ey = kg cos(kx + ut), B, = -(Ey/c) cos{kx + wt) [where k = 2x/A

=1.00 x 19%/m; w= ke =3.14 x 1013/s (€, is not determined).]

{b) These fields satisfy the conditions for the simplified form of Maxwell's
equations; so we substitute the expressions for Ey and Bz into the equations
at the top of the page.

”
~kEq sin(kx + wt) = -w(EOIC) sin(kx + wt) and

+{Egfc) sinlkx + wt) £ +eguquEy sin(kx + ut).
Both these are satisfied, since 50”0 = 1/c”, and we set w = kc above.
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